• Title/Summary/Keyword: Cr-coated zircaloy

Search Result 4, Processing Time 0.016 seconds

Characterization of eutectic reaction of Cr and Cr/CrN coated zircaloy accident tolerant fuel cladding

  • Dongju Kim;Martin Sevecek;Youho Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3535-3542
    • /
    • 2023
  • Eutectic reactions of five kinds of Cr-coated Zr alloy cladding with different base materials (Zr-Nb-Sn alloy or Zr-Nb alloy), different coating thicknesses (6~22.5 mm), and different coating materials (Cr single layer or Cr/CrN bilayer) were studied using Differential Scanning Calorimetry (DSC). The DSC experiments demonstrated that the onset temperatures of the Cr single layer coated specimens were almost identical to ~1308 ℃, regardless of base materials or coating thicknesses. This study demonstrated that the Cr/CrN bilayer coated Zr-Nb-Sn alloy has a slightly (~10 ℃) higher eutectic onset temperature compared to the single Cr-coated specimen. The eutectic region characterized by post-eutectic microstructure proportionally increases with coating thickness. The post-eutectic characterization with different holding times at high temperature (1310-1330 ℃) reveals that progression of Zr-Cr eutectic requires time, and it dramatically changed with exposure time and temperature. The practical value of the time gain in non-instantaneous eutectic formation in terms of safety margin, however, seems to be limited.

Effect of initial coating crack on the mechanical performance of surface-coated zircaloy cladding

  • Xu, Ze;Liu, Yulan;Wang, Biao
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1250-1258
    • /
    • 2021
  • In this paper, the mechanical performance of cracked surface-coated Zircaloy cladding, which has different coating materials, coating thicknesses and initial crack lengths, has been investigated. By analyzing the stress field near the crack tip, the safety zone range of initial crack length has been decided. In order to determine whether the crack can propagate along the radial (r) or axial (z) directions, the energy release rate has been calculated. By comparing the energy release rate with fracture toughness of materials, we can divide the initial crack lengths into three zones: safety zone, discussion zone and danger zone. The results show that Cr is suitable coating material for the cladding with a thin coating while Fe-Cr-Al have a better fracture mechanical performance in the cladding with thick coating. The Si-coated and SiC-coated claddings are suitable for reactors with low power fuel elements. Conclusions in this paper can provide reference and guidance for the cladding design of nuclear fuel elements.

Development of Cr cold spray-coated fuel cladding with enhanced accident tolerance

  • Sevecek, Martin;Gurgen, Anil;Seshadri, Arunkumar;Che, Yifeng;Wagih, Malik;Phillips, Bren;Champagne, Victor;Shirvan, Koroush
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.229-236
    • /
    • 2018
  • Accident-tolerant fuels (ATFs) are currently of high interest to researchers in the nuclear industry and in governmental and international organizations. One widely studied accident-tolerant fuel concept is multilayer cladding (also known as coated cladding). This concept is based on a traditional Zr-based alloy (Zircaloy-4, M5, E110, ZIRLO etc.) serving as a substrate. Different protective materials are applied to the substrate surface by various techniques, thus enhancing the accident tolerance of the fuel. This study focuses on the results of testing of Zircaloy-4 coated with pure chromium metal using the cold spray (CS) technique. In comparison with other deposition methods, e.g., Physical vapor deposition (PVD), laser coating, or Chemical vapor deposition techniques (CVD), the CS technique is more cost efficient due to lower energy consumption and high deposition rates, making it more suitable for industry-scale production. The Cr-coated samples were tested at different conditions ($500^{\circ}C$ steam, $1200^{\circ}C$ steam, and Pressurized water reactor (PWR) pressurization test) and were precharacterized and postcharacterized by various techniques, such as scanning electron microscopy, Energy-dispersive X-ray spectroscopy (EDX), or nanoindentation; results are discussed. Results of the steady-state fuel performance simulations using the Bison code predicted the concept's feasibility. It is concluded that CS Cr coating has high potential benefits but requires further optimization and out-of-pile and in-pile testing.

Microstructural Characteristics of Al-Cr Coated Zr Alloy Fabricated by Laser Surface Melting Process (레이저 표면 용융공정으로 Al-Cr 코팅한 Zr합금의 미세조직 특성)

  • Kim, Jeong-Min;Lee, Jae-Cheol;Kim, Il-Hyun;Kim, Hyun-Gil
    • Korean Journal of Materials Research
    • /
    • v.27 no.10
    • /
    • pp.563-568
    • /
    • 2017
  • In this study, the coating of an Al-Cr layer on the surface of a Zircaloy-4 alloy was carried out through plasma pretreatment coating and a laser surface melting process. Two different conditions for laser treatment, severe or minimal surface melting of the Zr alloy substrate, were applied to form the final coating. When there was significant surface melting of the Zr alloy, the solidification microstructure of the newly formed coating layer was mainly composed of needle-shaped $Al_3Zr$, Al(Cr) and $Al_7Cr$ phases. On the other hand, the solidification microstructure of the coating layer was mainly composed of Al(Cr) and $Al_7Cr$ phases when there was minimal surface melting of Zr base in the laser process. However, when the coating was maintained at $1100^{\circ}C$ for 2 hours, significant inter-diffusion occurred between the phases in the coating. As a result, the upper part of the coating layer was observed to mainly consist of $Al_3Zr$ and $Al_8Cr_5$ phases, regardless of the laser treatment conditions.