DOI QR코드

DOI QR Code

Estimation of Image-based Damage Location and Generation of Exterior Damage Map for Port Structures

영상 기반 항만시설물 손상 위치 추정 및 외관조사망도 작성

  • 김방현 (서울시립대학교 도시빅데이터융합학과) ;
  • 소상윤 (서울시립대학교 토목공학과) ;
  • 조수진 (서울시립대학교 토목공학과/도시빅데이터융합학과)
  • Received : 2023.08.23
  • Accepted : 2023.09.27
  • Published : 2023.10.31

Abstract

This study proposed a damage location estimation method for automated image-based port infrastructure inspection. Memory efficiency was improved by calculating the homography matrix using feature detection technology and outlier removal technology, without going through the 3D modeling process and storing only damage information. To develop an algorithm specialized for port infrastructure, the algorithm was optimized through ground-truth coordinate pairs created using images of port infrastructure. The location errors obtained by applying this to the sample and concrete wall were (X: 6.5cm, Y: 1.3cm) and (X: 12.7cm, Y: 6.4cm), respectively. In addition, by applying the algorithm to the concrete wall and displaying it in the form of an exterior damage map, the possibility of field application was demonstrated.

본 연구에서는 영상 기반 자동화된 항만시설물 점검을 위한 손상 위치 정보 추정 기법을 제안하였다. 3D 모델링 과정을 거치지 않고 특징 탐지 기술 및 이상치 제거 기술을 활용하여 호모그래피 행렬을 계산하고 손상 정보만 저장함으로써 메모리 효율을 높였다. 항만시설물에 특화된 손상 위치 정보 추정 알고리즘 개발을 위해 항만시설물 이미지를 이용하여 제작한 참값 좌표쌍을 통해 알고리즘을 최적화하였다. 이를 샘플 및 실제 콘크리트 벽체에 적용하여 구한 위치 오차는 각각 (X: 6.5cm, Y: 1.3cm), (X: 12.7cm, Y: 6.4cm)로 나타났다. 또한, 실제 콘크리트벽체를 대상으로 알고리즘을 적용하여 외관조사망도 형태로 표출함으로써 제안 기법의 현장 활용 가능성을 보였다.

Keywords

Acknowledgement

이 논문은 2021년도 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(20210659, ICT기반 항만인프라 스마트 재해대응 기술개발).

References

  1. Bay, H., Tuytelaars, T., and Van Gool, L. (2006), Surf: Speeded up robust features. In Computer Vision-ECCV 2006: 9th European Conference on Computer Vision, Graz, Austria, May 7-13, 2006. Proceedings, Part I 9, Springer Berlin Heidelberg, 404-417.
  2. Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F., and Adam, H. (2018), Encoder-decoder with atrous separable convolution for semantic image segmentation, In Proceedings of the European conference on computer vision (ECCV), 801-818.
  3. Fischler, M. A., and Bolles, R. C. (1981), Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography, Communications of the ACM, 24(6), 381-395. https://doi.org/10.1145/358669.358692
  4. Hamishebahar, Y., Guan, H., So, S., and Jo, J. (2022), A comprehensive review of deep learning-based crack detection approaches, Applied Sciences, 12(3), 1374.
  5. Jeong, D., Lee, J., and Ju, Y. (2019), Photogrammetric Crack Detection Method in Building using Unmanned Aerial Vehicle, Journal of the Architectural Institute of Korea Structure & Construction, 35(1), 11-19 (In Korean, with English abstract).
  6. Juan, L., and Gwun, O. (2009), A comparison of sift, pca-sift and surf, International Journal of Image Processing (IJIP), 3(4), 143-152.
  7. Karami, E., Prasad, S., and Shehata, M. (2017), Image matching using SIFT, SURF, BRIEF and ORB: performance comparison for distorted images, arXiv preprint. arXiv:1710.02726.
  8. Kim, B., and Cho, S. (2019), Image-based Concrete Crack Assessment using Mask and Region-based Convolutional Neural Network, Structural Control and Health Monitoring, 26(8), e2381(1-15). https://doi.org/10.1002/stc.2381
  9. Lee, S., Lee, K., Choi, H., and Lim, C. (2022), Establishment of a standard procedure for safety inspections of bridges using drones, KSCE Journal of Civil and Environmental Engineering Research, 42(2), 281-290 (In Korean, with English abstract). https://doi.org/10.12652/KSCE.2022.42.2.0281
  10. Lowe, D. G. (2004), Distinctive image features from scale-invariant keypoints, International Journal of Computer Vision, 60, 91-110. https://doi.org/10.1023/B:VISI.0000029664.99615.94
  11. Mistry, D., and Banerjee, A. (2017), Comparison of feature detection and matching approaches: SIFT and SURF, GRD Journals-Global Research and Development Journal for Engineering, 2(4), 7-13.
  12. Torr, P. H., and Zisserman, A. (2000), MLESAC: A new robust estimator with application to estimating image geometry, Computer Vision and Image Understanding, 78(1), 138-156.  https://doi.org/10.1006/cviu.1999.0832