DOI QR코드

DOI QR Code

Study on Establishment of a Monitoring System for Long-term Behavior of Caisson Quay Wall

케이슨 안벽의 장기 거동 모니터링 시스템 구축 연구

  • Received : 2023.08.31
  • Accepted : 2023.09.25
  • Published : 2023.10.31

Abstract

In this paper, a sensor-based monitoring system was established to analyze the long-term behavioral characteristics of the caisson quay wall, a representative structural type in port facilities. Data was collected over a period of approximately 10 months. Based on existing literature, anomalous behaviors of port facilities were classified, and a measurement system was selected to detect them. Monitoring systems were installed on-site to periodically collect data. The collected data was transmitted and stored on a server through LTE network. Considering the site conditions, inclinometers for measuring slope and crack meters for measuring spacing and settlement were installed. They were attached to two caissons for comparison between different caissons. The correlation among measured data, temperature, and tidal level was examined. The temperature dominated the spacing and settlement data. When the temperature changed by approximately 50 degrees, the spacing changed by 10 mm, the settlement by 2 mm, and the slope by 0.1 degrees. On the other hand, there was no clear relationship with tidal level, indicating a need for more in-depth analysis in the future. Based on the characteristics of these collected database, it will be possible to develop algorithms for detecting abnormal states in gravity-type quay walls. The acquisition and analysis of long-term data enable to evaluate the safety and usability of structures in the event of disasters and emergencies.

본 논문에서는 항만 계류시설 중 대표적인 구조형식인 케이슨식 안벽의 장기 거동 특성을 분석하기 위하여, 센서 기반 모니터링 시스템을 구축하고, 약 10개월간의 데이터를 검토하였다. 문헌을 바탕으로 항만시설물의 피해 원인 및 유형을 분류하였으며, 이에 적합한 센서 및 계측 시스템을 선정, 현장에 설치하여 주기적으로 데이터를 확보하였다. 확보한 데이터는 LTE 통신망으로 서버에 전달 및 저장된다. 현장상황을 고려하여 경사계, 이격거리계, 침하계를 설치하였으며, 서로 다른 케이슨간의 비교를 위하여 2개 함을 대상으로 센서를 부착하였다. 계측된 센서 데이터와 기온 및 인근 해역에서 계측된 조위 데이터의 상관성을 비교하였다. 이격거리계와 침하계의 경우 온도에 따른 영향이 지배적으로 나타난 반면, 경사계는 상대적으로 덜 민감한 경향을 보였다. 온도가 약 50도 변화 할 때, 변위는 10mm, 침하는 2mm, 기울기는 0.1도 가량 변화하였다. 한편, 조위 데이터와는 뚜렷한 상관성을 보이지 않았으며, 추후 심도있는 분석이 필요하다고 판단된다. 계측된 데이터의 특성을 바탕으로 중력식 안벽에 이상상태가 발생하였을 때 이를 탐지할 수 있는 알고리즘을 개발할 수 있으며, 이를 위한 데이터베이스를 구축하였다. 중력식 안벽 대상 지속적인 장기 데이터 확보 및 분석을 통하여, 재해 및 재난 발생 시 구조물의 안전성 및 사용성을 객관적으로 평가할 수 있을 것으로 기대된다.

Keywords

Acknowledgement

본 논문은 2021년 해양수산부 재원으로 해양수산과학기술진흥원(과제번호: 20210659)의 지원을 받아 수행되었습니다. 현장에서의 실험에 적극적으로 지원해주신 인천항만공사에 감사드립니다.

References

  1. Bolourani, A., Bitaraf, M., and Tak, A. (2021), Structural health monitoring of harbor caissons using support vector machine and principal component analysis, In Structures, 33, 4501-4513.  https://doi.org/10.1016/j.istruc.2021.07.032
  2. Broos, E. J. (2010), Design and Construct Contract for a Deep Sea Quay Wall in the Port of Rotterdam: Case study Brammen terminal, TU Delft. 
  3. Chung, C-H., An, H-Y., Shin S-B., and Kim, Y-H. (2014), Reset of Measurement Control Criteria for Monitoring Data through the Analysis of Measured Data, Journal of the Korea Institute for Structural Maintenance and Inspection, 18(6), 105-113 (in Korean).  https://doi.org/10.11112/JKSMI.2014.18.6.105
  4. Chung, T. (2018), Advanced Case Analysis and Implications of a Smart Seaport, Journal of Shipping and Logistics, 34(3), 489-510.  https://doi.org/10.37059/TJOSAL.2018.34.3.489
  5. den Adel, N. (2018), Load Testing of a Quay Wall: Evaluating the use of load testing by application of Bayesian Updating, Master Thesis, TU Delft. 
  6. Ghorbani, E., Svecova, D., Thomson, D.J., and Cha, Y-J. (2022), Bridge Pier Scour Level Quantification based on Output-only Kalman Filtering, Structural Health Monitoring, 21(5), 2116-2135.  https://doi.org/10.1177/14759217211053781
  7. Hou, S., and Wu, G. (2019), A Low-cost IoT-based Wireless Sensor System for Bridge Displacement Monitoring, Smart Materials and Structures, 28(8), 085047 
  8. Huynh, T. C., Dang, N. L., and Kim, J. T. (2018), PCA-based Filtering of Temperature Effect on Impedance Monitoring in Prestressed Tendon Anchorage, Smart Struct. Syst, 22, 57-70. 
  9. Jin, S-S., and Jung, H-J. (2018), Vibration-based Damage Detection using Online Learning Algorithm for Output-only Structural Health Monitoring, Structural Health Monitoring, 17(4), 727-746.  https://doi.org/10.1177/1475921717717310
  10. Jin, S-S., Min, J., Kim, Y-T., and Kim, R. (2023), Development of Online-learning based Adaptive Anomaly Detection Algorithm for Monitoring Data Analysis on Caisson Type Breakwater, Journal of Coastal Disaster Prevention, 10(1), 1-12 (in Korean).  https://doi.org/10.20481/kscdp.2023.10.1.1
  11. Jo, B., Jo, J., Khan, R., Kim, J., and Lee, Y. (2018), Development of a Cloud Computing-based Pier Type Port Structure Stability Evaluation Platform using Fiber Bragg Grating Sensors, Sensors, 18(6), 1681. 
  12. Joo, B. C., Park, K. T., and Lee, W. S. (2008), Propose standardizing the existing determination method of the management criteria in bridge monitoring system, The Proceeding of KSCE 2008, KSCE, 3329-3332. 
  13. KCS 64 35 30 (2018), Standard Specification for Port and Fishing Port Construction, Korea (in Korean). 
  14. Korea Authority of Land and Infrastructure Safety (2020), Optimization of Maintenance Measurement System Using Long-Term Measurement Data, KALIS, Report No. RD-20-R3-002. 
  15. Korea Institute of Ocean Science and Technology (2014), Performance Evaluation of Interlocking Caisson-Type Breakwaters against Abnormal High Waves, KIOST, Report No. PE99251. 
  16. Korea Maritime Institute (2018), Smart Port, Need to Establish a Road map Considering the Entire Logistics Network, KMI Trend Analysis, 74 (in Korean). 
  17. Lee, S., Kim, J., and Kim, H. (2010), Vibration-based Structural Health Monitoring of Caisson-type Breakwaters Damaged on Rubble Mound, Journal of Ocean Engineering and Technology, 24(1), 90-98 (in Korean). 
  18. Lee, J., Park, W., Lee, S., Kim, J., and Seo, C. (2013), Evaluation of Vibration Characteristics of Caisson-Type Breakwater Using Impact Vibration Tests and Validation of Numerical Analysis Model, Journal of Korean Society Coastal and Ocean Engineers, 25(1), 1-10.  https://doi.org/10.9765/KSCOE.2013.25.1.1
  19. Min, J. (2020), Development of Mid long-term Vision and Road Map for Smart Maintenance of Port Facilities, Coastal and Ocean, 10(1), 58-65 (in Korean). 
  20. Min, J., Jin, S-S., Park, M-S., Kim, Y-T., and Kim, S-T. (2022), Development of Real-time Monitoring Data Analysis Technique for Port Facility, Annual Conference of Korea Institute for Structural Maintenance and Inspection, 26(2), 232 (in Korean). 
  21. Ministry of Land, Infrastructure and Transport (2018), Detailed guidelines for safety and maintenance of facilities (performance evaluation), in Korean. 
  22. Minstry of Ocean and Fisheries (2016), Port Facility Management System (POMS). 
  23. Nguyen, V. H., Schommer, S., Maas, S., and Zurbes, A. (2016), Static Load Testing with Temperature Compensation for Structural Health Monitoring of Bridges, Engineering Structures, 127(15), 700-718.  https://doi.org/10.1016/j.engstruct.2016.09.018
  24. Oh, M., Min, J., and Jeong, S. K. (2022), Trend on the Smart Maintenance Technology for Port Infrastructure, KSCE Magazine, 70(6), 28-36 (in Korean). 
  25. Rageh, A., Linzell, D. G., and Eftekhar Azam, S. (2018), Automated, Strain-based, Output-only Bridge Damage Detection. Journal of Civil Structural Health Monitoring, 8, 833-846.  https://doi.org/10.1007/s13349-018-0311-6
  26. Schouten, O. (2020), Optimising the functionality of smart quay walls using measurement data obtained during the construction process, Master Thesis, TU Delft. 
  27. van der Wel, T. (2018), Reliability based Assessment of Quay Walls, Master Thesis, TU Delft. 
  28. US Army Corps of Engineers (2006), Coastal Engineering Manual. 
  29. Weng, J-H., Loh, C-H., Lynch, J. P., Lu, K-C., Lin P-Y., and Wang, Y. (2008), Output-only Modal Identification of a Cable-stayed Bridge using Wireless Monitoring Systems, Engineering Structures, 30(7), 1820-1830. https://doi.org/10.1016/j.engstruct.2007.12.002