DOI QR코드

DOI QR Code

Evaluation of Hydrophobic Performance and Durability of Concrete Coated with Cellulose Nanofiber Mixed Antifouling Coating Agent

셀룰로오스 나노섬유 혼합 방오코팅제가 도포된 콘크리트의 소수성능과 내구성능 평가

  • 장낙섭 (경상국립대학교 건설시스템공학과 ) ;
  • 노치훈 (경상국립대학교 건설시스템공학과 ) ;
  • 오홍섭 (경상국립대학교 건설시스템공학과)
  • Received : 2023.05.16
  • Accepted : 2023.08.18
  • Published : 2023.10.31

Abstract

Marine and hydraulic structures are subject to durability damage not only due to the penetration of sea water but also due to the attachment of marine organisms. Therefore, in this study, we tried to develop an antifouling coating agent with self-cleaning function for marine concrete. It was confirmed that the antifouling coating agent mixed with AKD, cellulose nanofibers and BADGE had sufficient antifouling performance at a well hydrophobicity of around 140° in contact angle and an inclination angle of 15°. In the abrasion resistance test of the surface, only a maximum loss of 0.015 g occurred. In the durability test, as a result of the chloride ion permeation test, almost no chloride ion permeation occurred in the variable where the coating agent was applied, and carbonation and freeze-thaw damage also rarely occurred, so it was analyzed that it was effective in securing durability of concrete.

해양 및 수리구조물은 수분침투뿐만 아니라 해양의생물의 부착 등에 의해서도 내구손상이 발생하게 된다. 따라서 본 연구에서는 해양 콘크리트 등을 위해 자가세척기능을 갖는 방오 코팅제를 개발하고자 하였다. AKD와 셀룰로오스 나노섬유 및 BADGE를 혼합한 방오코팅제를 접촉각 140°내외의 소수성과 기울임각 15°에서 충분한 방오성능 확보한 것으로 확인하였다. 표면의 내마모성 시험에서는 최대 0.015g의 손실만이 발생하는 것으로 나타났다. 내구성 실험에서도 염소이온투과시험결과 코팅제가 도포된 변수에서는 염소이온의 투가가 거의 발생하지 않았으며, 탄산화와 동결융해 손상 또한 역시 거의 발생하지 않아 콘크리트의 내구성 확보에서도 효과가 있는 것으로 분석되었다.

Keywords

Acknowledgement

본 연구는 한국연구재단 이공분야기초연구사업(NRF-2018R1D1A1B07049278)의 지원에 수행되었습니다.

References

  1. Almeida, E., Diamantino, T. C., and Sousa, O. (2007), Marine paints: the particular case of antifouling paints, Progress in Organic Coating, 59(1), 2-20.  https://doi.org/10.1016/j.porgcoat.2007.01.017
  2. Atta, A. M., Ahmed, M. A., El-Saeed, A. M., Abo-Elenien, O. M., and El-Sockary, M. A. (2020), Hybrid ZrO2/Cr2O3 epoxy nanocomposites as organic coatings for steel, Coatings, 10(10), 997. 
  3. Bae, J. W., Park, G. S., Ru, M. L., and Park, G. H. (2019), Antifouling effect of an ultrasonic system operating at different frequencies, Journal of the Korean Society of Marine Environment & Safety, 25(5), 609-616 (in Korean).  https://doi.org/10.7837/kosomes.2019.25.5.609
  4. Chen, H., Yang, J., Hu, Z., Zheng, B., Sun, J., Wo, Q., and Zhu, R. (2019), Effects of AKD sizing on the morphology and pore distribution properties of OCC fibers, Journal of Nanomaterials, 2019, 1-6.  https://doi.org/10.1155/2019/9490602
  5. Chindaprasirt, P., and Rattanasak, U. (2020), Fabrication of self-cleaning fly ash/polytetrafluoroethylene material for cement mortar spray-coating, Journal of Cleaner Production, 264, 121748. 
  6. Cho, S. H., Ryu, S. N., Hwang, W. B., and Yoon, B. S. (2013), Anti-fouling property of hydrophobic surfaces in sea water, Journal of the Korean Society for Marine Environment and Energy, 16(2), 82-87 (in Korean).  https://doi.org/10.7846/JKOSMEE.2013.16.2.82
  7. Cho, S. W., Hwang, S. Y., Park, J. Y., and Oh, D. S. (2021), Nanocellulose and nanochitin-based all-organic biopolymer composites, Polymer Science and Technology, 32(1), 15-20 (in Korean). 
  8. Esmaeili, A. R., Mir, N., and Mohammadi, R. (2020), A facile, fast, and low-cost method for fabrication of micro/nano-textured superhydrophobic surfaces, Journal of Colloid and Interface Science, 573, 317-327.  https://doi.org/10.1016/j.jcis.2020.04.027
  9. Flores-Vivian, I., Hejazi, V., Kozhukhova, M. I., Nosonovsky, M., and Sobolev, K. (2013), Self-assembling particle-siloxane coatings for superhydrophobic concrete, ACS Applied materials & Interfaces, 5(24), 13284-13294.  https://doi.org/10.1021/am404272v
  10. Goo, S. I., Park, H. J., Yook, S. Y., Park, S. Y., and Youn, H. J. (2018), Preparation of hydrophobized cellulose nanofibril film with high strength using AKD, Journal of Korea TAPPI, 50(6), 34-41 (in Korean).  https://doi.org/10.7584/JKTAPPI.2018.12.50.6.34
  11. Hong, S. K., and Lee, K. Y. (2013), Superhydrophobic nano patterning techniques for enhanced performance of naval underwater vessels, Journal of Ocean Engineering and Technology, 27(2), 114-120 (in Korean).  https://doi.org/10.5574/KSOE.2013.27.2.114
  12. Isogai, A. (2013), Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials, Journal of Wood Science, 59(6), 449-459.  https://doi.org/10.1007/s10086-013-1365-z
  13. Jang, N. S., Kim, T. K., and Oh, H. S. (2021), A Basic Study on the Marine Anti-Fouling Coating Using Cellulose Nanofiber, Journal of the Korean Recycled Construction Resources Institute, 9(4), 469-477.  https://doi.org/10.14190/JRCR.2021.9.4.469
  14. Khalil, H. A., Bhat, A. H., and Yusra, A. I. (2012), Green composites from sustainable cellulose nanofibrils: a review, Carbohydrate Polymers, 87(2), 963-979.  https://doi.org/10.1016/j.carbpol.2011.08.078
  15. Kim, S. H., Lee, J. Y., Jo, H. M., and Lee, Y. H. (2020), Study on the multilayer barrier coating using cellulose nanofibrils and internal sizing agent, Journal of Korea TAPPI, 52(6), 47-55 (in Korean).  https://doi.org/10.7584/JKTAPPI.2020.12.52.6.47
  16. Kim, Y., and Oh, H. (2021a), Microstructure Analysis of Cement Composite containing PMHS Emulsion to Improve Hydrophobic, Journal of the Korea institute for structural maintenance and inspection, 25(1), 25-32. (in Korean).  https://doi.org/10.11112/JKSMI.2021.25.1.25
  17. Kim, Y., and Oh, H. (2021b). Microstructure and Strength Characteristic of Hydropobic Cement Mortar with Silan Admixture, Journal of the Korean Recycled Construction Resources Institute, 9(2), 127-134.  https://doi.org/10.14190/JRCR.2021.9.2.127
  18. Kumar, S., Chauhan, V. S., and Chakrabarti, S. K. (2016), Separation and analysis techniques for bound and unbound alkyl ketene dimer(AKD) in paper: a review, Arabian Journal of Chemistry, 9, S1636-S1642.  https://doi.org/10.1016/j.arabjc.2012.04.019
  19. Lee, M. S., and Park, W. H. (2009), Self-cleaning and Super water repellent processing, Fiber Technology and Industry, 13(3), 159-165. 
  20. Nishimoto, S., and Bhushan, B. (2013), Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity, Rsc Advances, 3(3), 671-690.  https://doi.org/10.1039/C2RA21260A
  21. Oh, H. (2018). A study on the fundamental mechanical properties of hydrophobic cementeous mortar using silane admixtures, Journal of the Korean Recycled Construction Resources Institute, 6(2), 79-86.  https://doi.org/10.14190/JRCR.2018.6.2.79
  22. Wang, S., Li, Y., Fei, X., Sun, M., Zhang, C., Li, Y., Yang, Q., and Hong, X. (2011), Preparation of a durable superhydrophobic membrane by electrospinning poly (vinylidene fluoride)(PVDF) mixed with epoxy-siloxane modified SiO2 nanoparticles: A possible route to superhydrophobic surfaces with low water sliding angle and high water contact angle, Journal of Colloid and Interface Science, 359(2), 380-388.  https://doi.org/10.1016/j.jcis.2011.04.004
  23. Wahby, M. H., Atta, A. M., Moustafa, Y. M., Ezzat, A. O., and Hashem, A. I. (2021), Curing of functionalized superhydrophobic inorganic/epoxy nanocomposite and application as coatings for steel, Coatings, 11(1), 83. 
  24. Hong, K. N., Ji, S. Y., Park, J. K., Jung, K. S., and Han, S. H. (2014), Mechanical Properties and Carbonation Resistance of Water-Soluble Sulfur Concrete, Journal of the Korean Society of Safety, 29(4), 103-109. https://doi.org/10.14346/JKOSOS.2014.29.4.103