DOI QR코드

DOI QR Code

Fragility-based rapid earthquake loss assessment of precast RC buildings in the Marmara region

  • Ali Yesilyurt (Department of Earthquake Engineering, Disaster Management Institute, Istanbul Technical University) ;
  • Oguzhan Cetindemir (Department of Civil Engineering, Gebze Technical University) ;
  • Seyhan O. Akcan (Department of Civil Engineering, Bogazici University) ;
  • Abdullah C. Zulfikar (Department of Civil Engineering, Gebze Technical University)
  • Received : 2023.03.13
  • Accepted : 2023.08.20
  • Published : 2023.10.10

Abstract

Seismic risk assessment studies are one of the most crucial instruments for mitigating casualties and economic losses. This work utilizes fragility curves to evaluate the seismic risk of single-story precast buildings, which are generally favored in Marmara's organized industrial zones. First, the precast building stock in the region has been categorized into nine sub-classes. Then, seven locations in the Marmara region with a high concentration of industrial activities are considered. Probabilistic seismic hazard assessments were conducted for both the soil-dependent and soil-independent scenarios. Subsequently, damage analysis was performed based on the structural capacity and mean fragility curves. Considering four different consequence models, 630 sub-class-specific loss curves for buildings were obtained. In the current study, it has been determined that the consequence model has a significant impact on the loss curves, hence, average loss curves were computed for each case investigated. In light of the acquired results, it was found that the loss ratio values obtained at different locations within the same region show significant variation. In addition, it was observed that the structural damage states change from serviceable to repairable or repairable to unrepairable. Within the scope of the study, 126 average loss functions were presented that could be easily used by non-experts in earthquake engineering, regardless of structural analysis. These functions, which offer loss ratios for varying hazard levels, are valuable outputs that allow preliminary risk assessment in the region and yield sensible outcomes for insurance activities.

Keywords

References

  1. Akkar, S. and Bommer, J.J. (2010), "Empirical equations for the prediction of PGA, PGV, and spectral accelerations in Europe, the Mediterranean region, and the Middle East", Seismol. Res. Lett., 81(2), 195-206. https://doi.org/10.1785/gssrl.81.2.195.
  2. Alam, J., Kim, D. and Choi, B. (2017), "Uncertainty reduction of seismic fragility of intake tower using Bayesian Inference and Markov Chain Monte Carlo simulation", Struct. Eng. Mech., 63(1), 47-53. https://doi.org/10.12989/sem.2017.63.1.047.
  3. Arslan, M.H., Korkmaz, H.H. and Gulay, F.G. (2006), "Damage and failure pattern of prefabricated structures after major earthquakes in Turkey and shortfalls of the Turkish Earthquake code", Eng. Fail. Anal., 13(4), 537-557. https://doi.org/10.1016/j.engfailanal.2005.02.006.
  4. Askan, A. and Yucemen, M.S. (2010), "Probabilistic methods for the estimation of potential seismic damage: Application to reinforced concrete buildings in Turkey", Struct. Saf., 32(4), 262-271. https://doi.org/10.1016/j.strusafe.2010.04.001.
  5. Ates, S., Kahya, V., Yurdakul, M. and Adanur, S. (2013), "Damages on reinforced concrete buildings due to consecutive earthquakes in Van", Soil Dyn. Earthq. Eng., 53, 109-118. https://doi.org/10.1016/j.soildyn.2013.06.006.
  6. Bal, I.E., Crowley, H., Pinho, R. and Gulay, F.G. (2008), "Detailed assessment of structural characteristics of Turkish RC building stock for loss assessment models", Soil Dyn. Earthq. Eng., 28(10-11), 914-932. https://doi.org/10.1016/j.soildyn.2007.10.005.
  7. Batalha, N., Rodrigues, H. and Varum, H. (2019), "Seismic performance of RC precast industrial buildings-learning with the past earthquakes", Innov. Infrastr. Solut., 4(1), 1-13. https://doi.org/10.1007/s41062-018-0191-y.
  8. Belleri, A., Brunesi, E., Nascimbene, R., Pagani, M. and Riva, P. (2014), "Seismic performance of precast industrial facilities following major earthquakes in the Italian territory", J. Perform. Constr. Facil., 29, 1-31. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000617.
  9. Cauzzi, C. and Faccioli, E. (2008), "Broadband (0.05 to 20 s) prediction of displacement response spectra based on worldwide digital records", J. Seismol., 12(4), 453-475. https://doi.org/10.1007/s10950-008-9098-y.
  10. Chiou, B.J. and Youngs, R.R. (2008), "An NGA model for the average horizontal component of peak ground motion and response spectra", Earthq. Spectra, 24(1), 173-215. https://doi.org/10.1193/1.2894832.
  11. Coburn, A. and Spence, R. (2003), Earthquake Protection, John Wiley & Sons.
  12. Cosenza, E., Del Vecchio, C., Di Ludovico, M., Dolce, M., Moroni, C., Prota, A. and Renzi, E. (2018), "The Italian guidelines for seismic risk classification of constructions: Technical principles and validation", Bull. Earthq. Eng., 16(12), 5905-5935. https://doi.org/10.1007/s10518-018-0431-8.
  13. Dabbeek, J. and Silva, V. (2020), "Modeling the residential building stock in the Middle East for multi-hazard risk assessment", Nat. Hazard., 100(2), 781-810. https://doi.org/10.1007/s11069-019-03842-7.
  14. DEE-KOERI (2003), "Earthquake risk assessment for the Istanbul metropolitan area", Department of Earthquake Engineering, Kandilli Observatory and Earthquake Research Institute, Bogazici University Press, Istanbul, Turkey.
  15. Demartino, C. and Monti, G. (2020), "Low-LOD code-driven identification of the high seismic risk areas for industrial buildings in Italy", Bull. Earthq. Eng., 18(9), 4421-4452. https://doi.org/10.1007/s10518-020-00867-3.
  16. Demartino, C., Monti, G. and Vanzi, I. (2017b), "Seismic loss-of-support conditions of frictional beam-to-column connections", Struct. Eng. Mech., 61(4), 527-538. https://doi.org/10.12989/sem.2017.61.4.527.
  17. Demartino, C., Vanzi, I. and Monti, G. (2017a), "Probabilistic estimation of seismic economic losses of portal-like precast industrial buildings", Earthq. Struct., 13(3), 323-335. https://doi.org/10.12989/eas.2017.13.3.323.
  18. Demartino, C., Vanzi, I., Monti, G. and Sulpizio, C. (2018), "Precast industrial buildings in Southern Europe: Loss of support at frictional beam-to-column connections under seismic actions", Bull. Earthq. Eng., 16, 259-294. https://doi.org/10.1007/s10518-017-0196-5.
  19. Dogangun, A. (2004), "Performance of reinforced concrete buildings during the May 1, 2003 Bingol Earthquake in Turkey", Eng. Struct., 26(6), 841-856. https://doi.org/10.1016/j.engstruct.2004.02.005.
  20. Ecemis, A.S., Korkmaz, H.H. and Dere, Y. (2021), "Seismic performance improvement of RC buildings with external steel frames", Comput. Concrete, 27(4), 343-353. https://doi.org/10.12989/cac.2021.27.4.343.
  21. Elnashai, A.S. and Di Sarno, L. (2015), Fundamentals of Earthquake Engineering: from Source to Fragility, John Wiley & Sons.
  22. Erdik, M. (2001), "Report on 1999 Kocaeli and Duzce (Turkey) earthquakes", Structural Control for Civil and Infrastructure Engineering, 149-186.
  23. Erdik, M., Demircioglu, M., Sesetyan, K., Durukal, E. and Siyahi, B. (2004), "Earthquake hazard in Marmara region, Turkey", Soil Dyn. Earthq. Eng., 24(8), 605-631. https://doi.org/10.1016/j.soildyn.2004.04.003.
  24. Erdik, M., Tumsa, M.B.D., Pinar, A., Altunel, E., and Zulfikar, A.C. (2023), "A preliminary report on the February 6, 2023 Earthquake in Turkiye", http://doi.org/10.32858/temblor.297.
  25. Eren, C. and Lus, H. (2015), "A risk based PML estimation method for single-storey reinforced concrete industrial buildings and its impact on earthquake insurance rates", Bull. Earthq. Eng., 13(7), 2169-2195. https://doi.org/10.1007/s10518-014-9712-z.
  26. Gallovic, F., Zahradnik, J., Plicka, V., Sokos, E., Evangelidis, C., Fountoulakis, I. and Turhan, F. (2020), "Complex rupture dynamics on an immature fault during the 2020 Mw 6.8 Elazig earthquake, Turkey", Commun. Earth Environ., 1(1), 1-8. https://doi.org/10.1038/s43247-020-00038-x.
  27. Gurpinar, A., Abali, M., Yucemen, M.S. and Yesilcay, Y. (1978), "Feasibility of mandatory earthquake insurance in Turkey", Report No. 78-05, Earthquake Engineering Research Center, Middle East Technical University.
  28. Jun, W.K. and Jeeho, L. (2016), "A new damage index for seismic fragility analysis of reinforced concrete columns", Struct. Eng. Mech., 60(5), 875-890. https://doi.org/10.12989/sem.2016.60.5.875.
  29. Karimzadeh, S., Kadas, K., Askan, A., Erberik, M.A. and Yakut, A. (2020), "Derivation of analytical fragility curves using SDOF models of masonry structures in Erzincan (Turkey)", Earthq. Struct., 18(2), 249-261. https://doi.org/10.12989/eas.2020.18.2.249.
  30. Khanbabazadeh, H., Zulfikar, A.C. and Yesilyurt, A. (2020), "Basin edge effect on industrial structures damage pattern at clayey basins", Geomech. Eng., 23(6), 575-585. https://doi.org/10.12989/gae.2020.23.6.575.
  31. Le Pichon, X., Sengor, A.M.C., Demirbag, E., Rangin, C., Imren, C., Armijo, R., ... & Tok, B. (2001), "The active main Marmara fault", Earth Planet. Sci. Lett., 192(4), 595-616. https://doi.org/10.1016/S0012-821X(01)00449-6.
  32. Mehani, Y., Bechtoula, H., Kibboua, A. and Naili, M. (2013), "Assessment of seismic fragility curves for existing RC buildings in Algiers after the 2003 Boumerdes earthquake", Struct. Eng. Mech., 46(6), 791-808. https://doi.org/10.12989/sem.2013.46.6.791.
  33. Minghini, F., Ongaretto, E., Ligabue, V., Savoia, M. and Tullini, N. (2016), "Observational failure analysis of precast buildings after the 2012 Emilia earthquakes", Earthq. Struct., 11(2), 327-346. https://doi.org/10.12989/eas.2016.11.2.327.
  34. Ozerdem, A. and Barakat, S. (2000), "After the Marmara earthquake: lessons for avoiding short cuts to disasters", Third World Quarter., 21(3), 425-439. https://doi.org/10.1080/713701047.
  35. Pakdamar, F., Ilknur Kara, F., Eryilmaz, Y. and Yesilyurt, A. (2019), "Seismic risk assessment using updated hazard and building inventory data", Gradevinar, 71(05.), 375-387. https://doi.org/10.14256/JCE.2329.2018.
  36. Parsons, T., Toda, S., Stein, R.S., Barka, A. and Dieterich, J.H. (2000), "Heightened odds of large earthquakes near Istanbul: An interaction-based probability calculation", Sci., 288(5466), 661-665. https://doi.org/10.1126/science.288.5466.661.
  37. Pratico, L., Bovo, M., Buratti, N. and Savoia, M. (2022), "Large-scale seismic damage scenario assessment of precast buildings after the May 2012 Emilia earthquake", Bull. Earthq. Eng., 20(15), 8411-8444. https://doi.org/10.1007/s10518-022-01529-2.
  38. Rodrigues, D., Crowley, H. and Silva, V. (2018), "Earthquake loss assessment of precast RC industrial structures in Tuscany (Italy)", Bull. Earthq. Eng., 16(1), 203-228. https://doi.org/10.1007/s10518-017-0195-6.
  39. Senel, S.M. and Kayhan, A.H. (2010), "Fragility based damage assesment in existing precast industrial buildings: A case study for Turkey", Struct. Eng. Mech., 11(1), 39. https://doi.org/10.12989/sem.2010.34.1.039.
  40. Sengel, H.S. and Dogan, M. (2013), "Failure of buildings during Sultandagi Earthquake", Eng. Fail. Anal., 35, 1-15. https://doi.org/10.1016/j.engfailanal.2012.09.011.
  41. Sezen, H. and Dogangun, A. (2012), "Seismic performance of historical and monumental structures", Earthq. Eng., 181-202.
  42. Sezen, H., Whittaker, A.S., Elwood, K.J. and Mosalam, K.M. (2003), "Performance of reinforced concrete buildings during the August 17, 1999 Kocaeli, Turkey earthquake, and seismic design and construction practise in Turkey", Eng. Struct., 25(1), 103-114. https://doi.org/10.1016/S0141-0296(02)00121-9.
  43. Silva, V., Crowley, H., Pagani, M., Monelli, D. and Pinho, R. (2014), "Development of the OpenQuake engine, the Global Earthquake Model's open-source software for seismic risk assessment", Nat. Hazard., 72, 1409-1427. https://doi.org/10.1007/s11069-013-0618-x.
  44. Sousa, R., Silva, V. and Rodrigues, H. (2022), "The importance of indirect losses in the seismic risk assessment of industrial buildings-An application to precast RC buildings in Portugal", Int. J. Disast. Risk Reduct., 74, 102949. https://doi.org/10.1016/j.ijdrr.2022.102949.
  45. Tapan, M., Comert, M., Demir, C., Sayan, Y., Orakcal, K. and Ilki, A. (2013), "Failures of structures during the October 23, 2011 Tabanli (Van) and November 9, 2011 Edremit (Van) earthquakes in Turkey", Eng. Fail. Anal., 34, 606-628. https://doi.org/10.1016/j.engfailanal.2013.02.013.
  46. Woessner, J., Laurentiu, D., Giardini, D., Crowley, H., Cotton, F., Grunthal, G., ... & Stucchi, M. (2015), "The 2013 European seismic hazard model: Key components and results", Bull. Earthq. Eng., 13(12), 3553-3596. https://doi.org/10.1007/s10518-015-9795-1.
  47. Yesilyurt, A., Zulfikar, A.C. and Tuzun, C. (2021a), "Site classes effect on seismic vulnerability evaluation of RC precast industrial buildings", Earthq. Struct., 21(6), 627-639. https://doi.org/10.12989/eas.2021.21.6.627.
  48. Yesilyurt, A., Zulfikar, A.C. and Tuzun, C. (2021b), "Seismic vulnerability assessment of precast RC industrial buildings in Turkey", Soil Dyn. Earthq. Eng., 141, 106539. https://doi.org/10.1016/j.soildyn.2020.106539.
  49. Zhao, J.X., Zhang, J., Asano, A., Ohno, Y., Oouchi, T., Takahashi, T., ... & Fukushima, Y. (2006), "Attenuation relations of strong ground motion in Japan using site classification based on predominant period", Bull. Seismol. Soc. Am., 96(3), 898-913. https://doi.org/10.1785/0120050122.