DOI QR코드

DOI QR Code

Forced vibration of a sandwich Timoshenko beam made of GPLRC and porous core

  • Mohammad Safari (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Mehdi Mohammadimehr (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan) ;
  • Hossein Ashrafi (Department of Solid Mechanics, Faculty of Mechanical Engineering, University of Kashan)
  • Received : 2020.11.16
  • Accepted : 2022.10.06
  • Published : 2023.10.10

Abstract

In this study, forced vibration behavior of a piezo magneto electric sandwich Timoshenko beam is investigated. It is assumed a sandwich beam with porous core and graphene platelet reinforced composite (GPLRC) in facesheets subjected to magneto-electro-elastic and temperature-dependent material properties. The magneto electro platelets are under linear function along with the thickness that includes a cosine function and magnetic and electric constant potentials. The governing equations of motion are derived using modified strain gradient theory for microstructures. The effects of material length scale parameters, temperature change, different distributions of porous, various patterns of graphene platelets, and the core to face sheets thickness ratio on the natural frequency and excited frequency of a sandwich Timoshenko beam are scrutinized. Various size-dependent methods effects such as MSGT, MCST, and CT on the natural frequency is considered. Moreover, the final results affirm that the increase in porosity coefficient and volume fractions lead to an increase in the amount of natural frequency; while vice versa for the increment in the aspect ratio. From forced vibration analysis, it is understood that by increasing the values of volume fraction and the length thickness of GPL, the maximum deflection of a sandwich beam decreases. Also, it is concluded that increasing the temperature, the thickness of GPL, and the initial force leads to a decrease in the maximum deflection of GPL. It is also shown that resonance phenomenon occurs when the natural and excitation frequencies become equal to each other. Outcomes also reveal that the third natural frequency owns the minimum value of both deflection and frequency ratio and the first natural frequency has the maximum.

Keywords

Acknowledgement

The authors would like to thank the reviewers for their valuable comments and suggestions to improve the clarity of this work. Also, they would like to appreciate the Iranian Nanotechnology Development Committee for sustaining this study and the University of Kashan under Grant No. 8911238/25.

References

  1. Ashby, M.F., Evans, A.G. and Fleck, N.A. (2000), "List of contributors", Metal foams. https://doi.org/10.1016/B978-075067219-1/50001-5.
  2. Bahaadini, R. and Saidi, A.R. (2018), "Aeroelastic analysis of functionally graded rotating blades reinforced with graphene nanoplatelets in supersonic flow", Aerosp. Sci. Technol., 80, 381-391. https://doi.org/10.1016/j.ast.2018.06.035.
  3. Bamdad, M., Mohammadimehr, M. and Alambeigi, K. (2019), "Analysis of sandwich Timoshenko porous beam with temperature-dependent material properties: Magneto-electro-elastic vibration and buckling solution", J. Vib. Control, 25(23-24), 2875-2893. https://doi.org/10.1177/1077546319860314.
  4. Barati, M.R. and Shahverdi, H. (2020), "Finite element forced vibration analysis of refined shear deformable nanocomposite graphene platelet-reinforced beams", J. Brazil. Soc. Mech. Sci. Eng., 42(1), 1-14. https://doi.org/10.1007/s40430-019-2118-8.
  5. Chen, D., Kitipornchai, S. and Yang, J. (2016), "Nonlinear free vibration of shear deformable sandwich beam with a functionally graded porous core", Thin Wall. Struct., 107, 39-48. https://doi.org/10.1016/j.tws.2016.05.025.
  6. Chen, D., Yang, J. and Kitipornchai, S. (2016), "Free and forced vibrations of shear deformable functionally graded porous beams", Int. J. Mech. Sci., 108, 14-22. https://doi.org/10.1016/j.ijmecsci.2016.01.025.
  7. Chen, D., Yang, J. and Kitipornchai, S. (2015), "Elastic buckling and static bending of shear deformable functionally graded porous beam", Compos. Struct., 133, 54-61. https://doi.org/10.1016/j.compstruct.2015.07.052.
  8. Grygorowicz, M., Magnucki, K. and Malinowski, M. (2015), "Elastic buckling of a sandwich beam with variable mechanical properties of the core", Thin Wall. Struct., 87, 127-132. https://doi.org/10.1016/j.tws.2014.11.014.
  9. Guo, X. Y. and Zhang, W. (2016), "Nonlinear vibrations of a reinforced composite plate with carbon nanotubes", Compos. Struct., 135, 96-108. https://doi.org/10.1016/j.compstruct.2015.08.063.
  10. Hosseini, M. and Jamalpoor, A. (2015), "Analytical solution for thermomechanical vibration of double-viscoelastic nanoplate-systems made of functionally graded materials", J. Therm. Stress., 38(12), 1428-1456. https://doi.org/10.1080/01495739.2015.1073986.
  11. Li, Y. and Tang, Y. (2022), "Application of Galerkin iterative technique to nonlinear bending response of three-directional functionally graded slender beams subjected to hygro-thermal loads", Compos. Struct., 290, 115481. https://doi.org/10.1016/j.compstruct.2022.115481.
  12. Ma, H.M., Gao, X.L. and Reddy, J. (2008), "A microstructure-dependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solid., 56(12), 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007.
  13. Magnucka-Blandzi, E. (2011), "Mathematical modelling of a rectangular sandwich plate with a metal foam core", J. Theor. Appl. Mech., 49(2), 439-455.
  14. Mohammadimehr, M., Monajemi, A.A. and Afshari, H. (2020), "Free and forced vibration analysis of viscoelastic damped FGCNT reinforced micro composite beams", Microsyst. Technol., 26(10), 3085-3099. https://doi.org/10.1007/s00542-017-3682-4.
  15. Mohammadimehr, M. and Mostafavifar, M. (2016), "Free vibration analysis of sandwich plate with a transversely flexible core and FG-CNTs reinforced nanocomposite face sheets subjected to magnetic field and temperature-dependent material properties using SGT", Compos. Part B: Eng., 94, 253-270. https://doi.org/10.1016/j.compositesb.2016.03.030.
  16. Mohammadimehr, M., Rostami, R. and Arefi, M. (2016), "Electro-elastic analysis of a sandwich thick plate considering FG core and composite piezoelectric layers on Pasternak foundation using TSDT", Steel Compos. Struct., 20(3), 513-543. https://doi.org/10.12989/scs.2016.20.3.513.
  17. Mohammadimehr, M., Rousta Navi, B. and Ghorbanpour Arani, A. (2015), "Free vibration of viscoelastic double-bonded polymeric nanocomposite plates reinforced by FG-SWCNTs using MSGT, sinusoidal shear deformation theory and meshless method", Compos. Struct., 131, 654-671. https://doi.org/10.1016/j.compstruct.2015.05.077.
  18. Mohammadimehr, M., Salemi, M. and Navi, B.R. (2016), "Bending, buckling, and free vibration analysis of MSGT microcomposite Reddy plate reinforced by FG-SWCNTs with temperature-dependent material properties under hydro-thermomechanical loadings using DQM", Compos. Struct., 138, 361-380. https://doi.org/10.1016/j.compstruct.2015.11.055.
  19. Mohammadimehr, M. and Meskini, M. (2020), "Analysis of porous micro sandwich plate: Free and forced vibration under magneto-electro-elastic loadings", Adv. Nano Res., 8(1), 69-82. https://doi.org/10.12989/anr.2020.8.1.069.
  20. Rafiee, M., Yang, J. and Kitipornchai, S. (2013), "Large amplitude vibration of carbon nanotube reinforced functionally graded composite beams with piezoelectric layers", Compos. Struct., 96, 716-725. https://doi.org/10.1016/j.compstruct.2012.10.005.
  21. Rajabi, J. and Mohammadimehr, M. (2019), "Hydro-thermomechanical biaxial buckling analysis of sandwich micro-plate with isotropic/orthotropic cores and piezoelectric/polymeric nanocomposite face sheets based on FSDT on elastic foundations", Steel Compos. Struct., 33(4), 509-523. https://doi.org/10.12989/scs.2019.33.4.509.
  22. Shahdin, A., Mezeix, L., Bouvet, C., Morlier, J. and Gourinat, Y. (2009), "Fabrication and mechanical testing of glass fiber entangled sandwich beams: A comparison with honeycomb and foam sandwich beams", Compos. Struct., 90(4), 404-412. https://doi.org/10.1016/j.compstruct.2009.04.003.
  23. Shahedi, S. and Mohammadimehr, M. (2020), "Vibration analysis of rotating fully-bonded and delaminated sandwich beam with CNTRC face sheets and AL-foam flexible core in thermal and moisture environments", Mech. Bas. Des. Struct. Mach., 48(5), 584-614. https://doi.org/10.1080/15397734.2019.1646661.
  24. Shen, H.S., Lin, F. and Xiang, Y. (2017), "Nonlinear vibration of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations in thermal environments", Nonlin. Dyn., 90(2), 899-914. https://doi.org/10.1007/s11071-017-3701-0.
  25. Tagarielli, V.L., Deshpande, V.S. and Fleck, N.A. (2007), "The dynamic response of composite sandwich beams to transverse impact", Int. J. Solid. Struct., 44(7-8), 2442-2457. https://doi.org/10.1016/j.ijsolstr.2006.07.015.
  26. Tang, Y., Lv, X. and Yang, T. (2019), "Bi-directional functionally graded beams: Asymmetric modes and nonlinear free vibration", Compos. Part B: Eng., 156, 319-331. https://doi.org/10.1016/j.compositesb.2018.08.140.
  27. Tang, Y., Ma, Z.S., Ding, Q. and Wang, T. (2021), "Dynamic interaction between bi-directional functionally graded materials and magneto-electro-elastic fields: A nano-structure analysis", Compos. Struct., 264, 113746. https://doi.org/10.1016/j.compstruct.2021.113746.
  28. Tang, Y., Wang, T., Ma, Z.S. and Yang, T. (2021), "Magneto-electro-elastic modelling and nonlinear vibration analysis of bidirectional functionally graded beams", Nonlin. Dyn., 105(3), 2195-2227. https://doi.org/10.1007/s11071-021-06656-0.
  29. Wu, H., Kitipornchai, S. and Yang, J. (2015), "Free vibration and buckling analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets", Int. J. Struct. Stab. Dyn., 15(07), 1540011. https://doi.org/10.1142/S0219455415400118.
  30. Wu, H., Yang, J. and Kitipornchai, S. (2017), "Dynamic instability of functionally graded multilayer graphene nanocomposite beams in thermal environment", Compos. Struct., 162, 244-254. https://doi.org/10.1016/j.compstruct.2016.12.001.
  31. Zhen, W. and Wanji, C. (2018), "Free and forced vibration of laminated composite beams", AIAA J., 56(7), 2877-2886. https://doi.org/10.2514/1.J055506.
  32. Zhou, H.W. and Mishnaevs, L.J.R. (2016), "y HY Yi, YQ Liu, X. Hu, A. Warrier and GM Dai", Compos. Part B, 88, 201-211.. https://doi.org/10.1016/j.compositesb.2015.10.035.