• Title/Summary/Keyword: graphene platelets reinforced composite

Search Result 32, Processing Time 0.018 seconds

Elastodynamic and wave propagation analysis in a FG graphene platelets-reinforced nanocomposite cylinder using a modified nonlinear micromechanical model

  • Hosseini, Seyed Mahmoud;Zhang, Chuanzeng
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.255-271
    • /
    • 2018
  • This paper deals with the transient dynamic analysis and elastic wave propagation in a functionally graded graphene platelets (FGGPLs)-reinforced composite thick hollow cylinder, which is subjected to shock loading. A micromechanical model based on the Halpin-Tsai model and rule of mixture is modified for nonlinear functionally graded distributions of graphene platelets (GPLs) in polymer matrix of composites. The governing equations are derived for an axisymmetric FGGPLs-reinforced composite cylinder with a finite length and then solved using a hybrid meshless method based on the generalized finite difference (GFD) and Newmark finite difference methods. A numerical time discretization is performed for the dynamic problem using the Newmark method. The dynamic behaviors of the displacements and stresses are obtained and discussed in detail using the modified micromechanical model and meshless GFD method. The effects of the reinforcement of the composite cylinder by GPLs on the elastic wave propagations in both displacement and stress fields are obtained for various parameters. It is concluded that the proposed micromechanical model and also the meshless GFD method have a high capability to simulate the composite structures under shock loadings, which are reinforced by FGGPLs. It is shown that the modified micromechanical model and solution technique based on the meshless GFD method are accurate. Also, the time histories of the field variables are shown for various parameters.

Isogeometric thermal postbuckling of FG-GPLRC laminated plates

  • Kiani, Y.;Mirzaei, M.
    • Steel and Composite Structures
    • /
    • v.32 no.6
    • /
    • pp.821-832
    • /
    • 2019
  • An analysis on thermal buckling and postbuckling of composite laminated plates reinforced with a low amount of graphene platelets is performed in the current investigation. It is assumed that graphaene platelets are randomly oriented and uniformly dispersed in each layer of the composite media. Elastic properties of the nanocomposite media are obtained by means of the modified Halpin-Tsai approach which takes into account the size effects of the graphene reinforcements. By means of the von $K{\acute{a}}rm{\acute{a}}n$ type of geometrical nonlinearity, third order shear deformation theory and nonuniform rational B-spline (NURBS) based isogeometric finite element method, the governing equations for the thermal postbuckling of nanocomposite plates in rectangular shape are established. These equations are solved by means of a direct displacement control strategy. Numerical examples are given to study the effects of boundary conditions, weight fraction of graphene platelets and distribution pattern of graphene platelets. It is shown that, with introduction of a small amount of graphene platelets into the matrix of the composite media, the critical buckling temperature of the plate may be enhanced and thermal postbuckling deflection may be alleviated.

Vibration analysis of functionally graded graphene platelet-reinforced composite doubly-curved shallow shells on elastic foundations

  • Sobhy, Mohammed;Zenkour, Ashraf M.
    • Steel and Composite Structures
    • /
    • v.33 no.2
    • /
    • pp.195-208
    • /
    • 2019
  • Based on a four-variable shear deformation shell theory, the free vibration analysis of functionally graded graphene platelet-reinforced composite (FGGPRC) doubly-curved shallow shells with different boundary conditions is investigated in this work. The doubly-curved shells are composed of multi nanocomposite layers that are reinforced with graphene platelets. The graphene platelets are uniformly distributed in each individual layer. While, the volume faction of the graphene is graded from layer to other in accordance with a novel distribution law. Based on the suggested distribution law, four types of FGGPRC doubly-curved shells are studied. The present shells are assumed to be rested on elastic foundations. The material properties of each layer are calculated using a micromechanical model. Four equations of motion are deduced utilizing Hamilton's principle and then converted to an eigenvalue problem employing an analytical method. The obtained results are checked by introducing some comparison examples. A detailed parametric investigation is performed to illustrate the influences of the distribution type of volume fraction, shell curvatures, elastic foundation stiffness and boundary conditions on the vibration of FGGPRC doubly-curved shells.

Nonlinear low-velocity impact response of graphene platelets reinforced metal foams doubly curved shells

  • Hao-Xuan Ding;Yi-Wen Zhang;Yin-Ping Li;Gui-Lin She
    • Steel and Composite Structures
    • /
    • v.49 no.3
    • /
    • pp.281-291
    • /
    • 2023
  • Due to the fact that the nonlinear low-velocity impact response of graphene platelets reinforced metal foams (GPLRMF) doubly curved shells have not been investigated in the existing works, this paper aims to solve this issue. Using Reddy's high-order shear deformation theory (HSDT), the nonlinear governing equations of GPLRMF doubly curved shells are obtained by Euler-Lagrange method, discretized by Galerkin principle, and solved by the fourth-order Runge-Kutta method to obtain the impact force and central deflection. The nonlinear Hertz contact law is applied to determine the contact force. Finally, the impacts of graphene platelets (GPLs) distribution pattern, porosity distribution form, porosity coefficient, damping coefficient, impact parameters (radius and initial velocity), GPLs weight fraction, pre-stressing force and different shell types on the low-velocity impact curves are analyzed. It can be found that, among the four shell structures, the impact resistance of spherical shell is the best, while that of cylindrical shell is the worst.

Natural frequency analysis of joined conical-cylindrical-conical shells made of graphene platelet reinforced composite resting on Winkler elastic foundation

  • Xiangling Wang;Xiaofeng Guo;Masoud Babaei;Rasoul Fili;Hossein Farahani
    • Advances in nano research
    • /
    • v.15 no.4
    • /
    • pp.367-384
    • /
    • 2023
  • Natural frequency behavior of graphene platelets reinforced composite (GPL-RC) joined truncated conical-cylindrical- conical shells resting on Winkler-type elastic foundation is presented in this paper for the first time. The rule of mixture and the modified Halpin-Tsai approach are applied to achieve the mechanical properties of the structure. Four different graphene platelets patterns are considered along the thickness of the structure such as GPLA, GPLO, GPLX, GPLUD. Finite element procedure according to Rayleigh-Ritz formulation has been used to solve 2D-axisymmetric elasticity equations. Application of 2D axisymmetric elasticity theory allows thickness stretching unlike simple shell theories, and this gives more accurate results, especially for thick shells. An efficient parametric investigation is also presented to show the effects of various geometric variables, three different boundary conditions, stiffness of elastic foundation, dispersion pattern and weight fraction of GPLs nanofillers on the natural frequencies of the joined shell. Results show that GPLO and BC3 provide the most rigidity that cause the most natural frequencies among different BCs and GPL patterns. Also, by increasing the weigh fraction of nanofillers, the natural frequencies will increase up to 200%.

Buckling treatment of piezoelectric functionally graded graphene platelets micro plates

  • Abbaspour, Fatemeh;Arvin, Hadi
    • Steel and Composite Structures
    • /
    • v.38 no.3
    • /
    • pp.337-353
    • /
    • 2021
  • Micro-electro-mechanical systems (MEMS) are widely employed in sensors, biomedical devices, optic sectors, and micro-accelerometers. New reinforcement materials such as carbon nanotubes as well as graphene platelets provide stiffer structures with controllable mechanical specifications by changing the graphene platelet features. This paper deals with buckling analyses of functionally graded graphene platelets micro plates with two piezoelectric layers subjected to external applied voltage. Governing equations are based on Kirchhoff plate theory assumptions beside the modified couple stress theory to incorporate the micro scale influences. A uniform temperature change and external electric field are regarded along the micro plate thickness. Moreover, an external in-plane mechanical load is uniformly distributed along the micro plate edges. The Hamilton's principle is employed to extract the governing equations. The material properties of each composite layer reinforced with graphene platelets of the considered micro plate are evaluated by the Halpin-Tsai micromechanical model. The governing equations are solved by the Navier's approach for the case of simply-supported boundary condition. The effects of the external applied voltage, the material length scale parameter, the thickness of the piezoelectric layers, the side, the length and the weight fraction of the graphene platelets as well as the graphene platelets distribution pattern on the critical buckling temperature change and on the critical buckling in-plane load are investigated. The outcomes illustrate the reduction of the thermal buckling strength independent of the graphene platelets distribution pattern while meanwhile the mechanical buckling strength is promoted. Furthermore, a negative voltage, -50 Volt, strengthens the micro plate stability against the thermal buckling occurrence about 9% while a positive voltage, 50 Volt, decreases the critical buckling load about 9% independent of the graphene platelet distribution pattern.

Effects of graphene platelet presence and porosity distribution on the vibration of piezoelectric sinusoidal sandwich beam

  • Mojtaba Mehrabi;Keivan Torabi
    • Structural Engineering and Mechanics
    • /
    • v.91 no.1
    • /
    • pp.87-102
    • /
    • 2024
  • In recent years, the focus on vibration analysis of multilayer smart structures has attracted considerable attention in many engineering applications. In this work, vibration analysis of a three-layer microporous beam with a core amplified by a composite material reinforced with graphene platelets and two piezoelectric thin films is discussed. It is assumed that piezoelectric layers with a thickness of 0.01 core are very thin and the properties of the matrix and reinforcement vary in the thickness directions. The governing equations of motion are obtained using an energy approach and the method of numerical differential quadrature to solve them. The results of this work are compared to other research and there is good agreement between them. The influences of the volumetric weight fraction of graphene wafers, different graphene platelets distributions, porosity distribution, mass scale parameters and thin ratio of graphene platelets take into account the natural dimensionless frequencies of the micro-beam. The results of this study show that the symmetric distribution of graphene platelets based on the symmetric porosity distribution has a great influence on the natural frequencies without basic dimension of the micro-beam, while the shape ratios of graphene platelets do not have a significant influence on natural frequency changes.

Buckling analysis of sandwich beam reinforced by GPLs using various shear deformation theories

  • Hanifehlou, Sona;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • v.25 no.5
    • /
    • pp.427-432
    • /
    • 2020
  • In this research, the buckling analysis of sandwich beam with composite reinforced by graphene platelets (GPLs) in two face sheets is investigated. Three type various porosity patterns including uniform, symmetric and asymmetric are considered through the thickness direction of the core. Also, the top and bottom face sheets layers are considered composite reinforced by GPLs/CNTs based on Halpin-Tsai micromechanics model and extended mixture rule, respectively. Based on various shear deformation theories such as Euler-Bernoulli, Timoshenko and Reddy beam theories, the governing equations of equilibrium using minimum total potential energy are obtained. It is seen that the critical buckling load decreases with an increase in the porous coefficient, because the stiffness of sandwich beam reduces. Also, it is shown that the critical buckling load for asymmetric distribution is lower than the other cases. It can see that the effect of graphene platelets on the critical buckling load is higher than carbon nanotubes. Moreover, it is seen that the difference between carbon nanotubes and graphene platelets for Reddy and Euler-Bernoulli beam theories is most and least, respectively.

Nonlinear finite element vibration analysis of functionally graded nanocomposite spherical shells reinforced with graphene platelets

  • Xiaojun Wu
    • Advances in nano research
    • /
    • v.15 no.2
    • /
    • pp.141-153
    • /
    • 2023
  • The main objective of this paper is to develop the finite element study on the nonlinear free vibration of functionally graded nanocomposite spherical shells reinforced with graphene platelets under the first-order shear deformation shell theory and von Kármán nonlinear kinematic relations. The governing equations are presented by introducing the full asymmetric nonlinear strain-displacement relations followed by the constitutive relations and energy functional. The extended Halpin-Tsai model is utilized to specify the overall Young's modulus of the nanocomposite. Then, the finite element formulation is derived and the quadrilateral 8-node shell element is implemented for finite element discretization. The nonlinear sets of dynamic equations are solved by the use of the harmonic balance technique and iterative method to find the nonlinear frequency response. Several numerical examples are represented to highlight the impact of involved factors on the large-amplitude vibration responses of nanocomposite spherical shells. One of the main findings is that for some geometrical and material parameters, the fundamental vibrational mode shape is asymmetric and the axisymmetric formulation cannot be appropriately employed to model the nonlinear dynamic behavior of nanocomposite spherical shells.

Propagation behaviors of guided waves in graphene platelet reinforced metal foam plates

  • Wubin Shan;Hao Zhong;Nannan Zhang;Guilin She
    • Geomechanics and Engineering
    • /
    • v.35 no.6
    • /
    • pp.637-646
    • /
    • 2023
  • At present, the research on wave propagation in graphene platelet reinforced composite plates focuses on the propagation behavior of bulk waves, in which the effect of boundary condition is ignored, there is no literature report on propagation behaviors of guided waves in graphene platelet reinforced metal foams (GPLRMF) plates. In fact, wave propagation is affected by boundary conditions, so it is necessary to study the propagation characteristics of guided waves. The aim of this paper is to solve this problem. The effective performance of the material was calculated using the mixing law. Equations of motion of GPLRMF plate is derived by using Hamilton's principle. Then, the eigenvalue method is used to obtain the expressions of bending wave, shear wave and longitudinal wave, and the degradation verification is carried out. Finally, the effects of graphene platelets (GPLs) volume fraction, elastic foundation, porosity coefficient, GPLs distribution types and porosity distribution types on the dispersion relations are studied. We find that these factors play an important role in the propagation characteristics and phase velocity of guided waves.