DOI QR코드

DOI QR Code

이미지 쌍의 유사도를 고려한 Acoustic Odometry 정확도 향상 연구

A Study on Acoustic Odometry Estimation based on the Image Similarity using Forward-looking Sonar

  • 윤은철 (경북대학교 로봇 및 스마트시스템공학과) ;
  • 김병진 (한국기계연구원) ;
  • 조한길 (경북대학교 로봇 및 스마트시스템공학과)
  • Eunchul Yoon (Dept. of Robot and Smart System Engineering, Kyungpook National Unversity) ;
  • Byeongjin Kim (Korea Institute of Machinery and Materials) ;
  • Hangil Joe (Dept. of Robot and Smart System Engineering, Kyungpook National Unversity)
  • 투고 : 2023.09.06
  • 심사 : 2023.09.22
  • 발행 : 2023.09.30

초록

In this study, we propose a method to improve the accuracy of acoustic odometry using optimal frame interval selection for Fourier-based image registration. The accuracy of acoustic odometry is related to the phase correlation result of image pairs obtained from the forward-looking sonar (FLS). Phase correlation failure is caused by spurious peaks and high-similarity image pairs that can be prevented by optimal frame interval selection. We proposed a method of selecting the optimal frame interval by analyzing the factors affecting phase correlation. Acoustic odometry error was reduced by selecting the optimal frame interval. The proposed method was verified using field data.

키워드

과제정보

이 성과는 2021년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No.2021R1C1C1008655). 또한, 2022년도 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(20220188, 경북씨그랜트).

참고문헌

  1. L. Whitcomb, D. R. Yoerger, H. Singh, and J. Howland, "Advances in underwater robot vehicles for deep ocean exploration: Navigation, control, and survey operations", Proc. of Robotics Research: The Ninth International Symposium, pp. 439-448, Snowbird, Utah, USA,2000.
  2. S.-W. Huang, E. Chen, and J.-H. Guo, "Seafloor obstacle detection by sidescan sonar scanlines for submarine cable construction", Proc. of 2014 Oceans - St. John's, pp. 1-6, St. John's, Newfoundland and Labrador, Canada, 2014.
  3. D. P. Williams, "On optimal auv track-spacing for underwater mine detection", Proc. of 2010 IEEE International Conference on Robotics and Automation, pp. 4755-4762, Anchorage, Alaska, USA, 2010.
  4. M. Agrawal and K. Konolige, "Real-time localization in outdoor environments using stereo vision and inexpensive gps", Proc. of 18th International conference on pattern recognition (ICPR'06), pp. 1063-1068, Hong Kong, China, 2006.
  5. S.-C. Yu and M. Sung, "Optical and acoustic sensing and intelligence of underwater drones", Soc. Naval Architects of Korea, Vol. 57, No. 3, pp. 24-27, 2020.
  6. H. T. Choi, "Robot navigation and SLAM technology: Introduction and understanding of underwater robot navigation technology", Robots and humans, Vol. 15, No. 2, pp. 5-18, 2018.
  7. M. Franchi, A. Ridolfi, and L. Zacchini, "A forward-looking sonar-based system for underwater mosaicing and acoustic odometry", Proc. of 2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV), pp. 1-6, Porto, Portugal, 2018.
  8. N. Hurtos, S. Nagappa, N. Palomeras, and J. Salvi, "Real-time mosaicing with two-dimensional forward-looking sonar", Proc. of 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 601-606, Hong Kong, China, 2014.
  9. W. Xu, J. Yang, H. Wei, H. Lu, X. Tian, and X. Li, "A localization algorithm based on pose graph using forward-looking sonar for deep-sea mining vehicle", Ocean Eng., Vol. 284, p. 114968, 2023.
  10. N. H. Vilarnau, "Forward-looking sonar mosaicing for underwater environments", Ph. D. thesis, University of Girona, Girona, Spain, ES, 2014.
  11. G. Lowe, "Sift-the scale invariant feature transform", Int. J., Vol. 2, No. 91-110, p. 2, 2004.
  12. H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, "Speeded-up robust features (surf)", Comput. Vis. Image underst., Vol. 110, No. 3, pp. 346-359, 2008. https://doi.org/10.1016/j.cviu.2007.09.014
  13. B. S. Reddy and B. N. Chatterji, "An fft-based technique for translation, rotation, and scale-invariant image registration", IEEE Trans. Image Process., Vol. 5, No. 8, pp. 1266-1271, 1996. https://doi.org/10.1109/83.506761
  14. L. Piyathilaka and R. Munasinghe, "An experimental study on using visual odometry for short-run self- localization of field robot", Proc. of 2010 Fifth International Conference on Information and Automation for Sustainability, pp. 150-155, Colombo, Sri Lanka, 2010.
  15. M. Pfingsthorn, A. Birk, S. Schwertfeger, H. Bulow, and K. Pathak, "Maximum likelihood mapping with spectral image registration", Proc. of 2010 IEEE International Conference on Robotics and Automation, pp. 4282-4287, Anchorage, Alaska, USA, 2010.
  16. N. Hurtos Vilarnau, X. Cufi i Sole, Y. Petillot, and J. Salvi, "Fourier-based registrations for two-dimensional forward-looking sonar image mosaicing", Proc. of 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5298-5305, Vilamoura, Algarve, Portugal, 2012.
  17. B. Li, W. Yan, and H. Li, "A combinatorial registration method for forward-looking sonar image", IEEE Trans. Industr. Inform., pp.1-10, 2023.
  18. H. Joe and S.-C. Yu, "Study on Seabed Mapping using Two Sonar Devices for AUV Application", J. Korea Robot. Soc., Vol. 16, No. 2, pp. 94.
  19. H. Cho, B. Kim, and S.-C. Yu, "Auv-based underwater 3-d point cloud generation using acoustic lens-based multibeam sonar", IEEE J. Ocean. Eng., Vol. 43, No. 4, pp. 856-872, 2017. https://doi.org/10.1109/JOE.2017.2751139
  20. J. Pyo, H. Cho, H. Joe, T. Ura, and S.-C. Yu, "Development of hovering type auv "cyclops" and its performance evaluation using image mosaicing", Ocean Eng., Vol. 109, pp. 517-530, 2015. https://doi.org/10.1016/j.oceaneng.2015.09.023
  21. H. Joe, H. Cho, M. Sung, J. Kim, and S.-c. Yu, "Sensor fusion of two sonar devices for underwater 3d mapping with an auv", Auton. Robots, Vol. 45, No. 4, pp. 543-560, 2021. https://doi.org/10.1007/s10514-021-09986-5