DOI QR코드

DOI QR Code

수중 유속 및 유향의 동시 측정을 위한 이미지 분석 기술에 관한 연구

Image Analysis for the Simultaneous Measurement of Underwater Flow Velocity and Direction

  • 서동민 (세명대학교 전기공학과) ;
  • 오상우 (선박해양플랜트연구소 해양공공디지털연구본부) ;
  • 변성훈 (선박해양플랜트연구소 해양공공디지털연구본부)
  • Dongmin Seo (Department of Electrical Engineering, Semyung University) ;
  • Sangwoo Oh (Ocean and Maritime Digital Technology Research Division, Korea Research Institute of Ships & Ocean Engineering) ;
  • Sung-Hoon Byun (Ocean and Maritime Digital Technology Research Division, Korea Research Institute of Ships & Ocean Engineering)
  • 투고 : 2023.09.07
  • 심사 : 2023.09.19
  • 발행 : 2023.09.30

초록

To measure the flow velocity and direction in the near field of an unmanned underwater vehicle, an optical measurement unit containing an image sensor and a phosphor-integrated pillar that mimics the neuromasts of a fish was constructed. To analyze pillar movement, which changes with fluid flow, fluorescence image analysis was conducted. To analyze the flow velocity, mean force analysis, which could determine the relationship between the light intensity of a fluorescence image and an external force, and length-force analysis, which could determine the distance between the center points of two fluorescence images, were employed. Additionally, angle analysis that can determine the angles at which pixels of a digital image change was selected to analyze the direction of fluid flow. The flow velocity analysis results showed a high correlation of 0.977 between the external force and the light intensity of the fluorescence image, and in the case of direction analysis, omnidirectional movement could be analyzed. Through this study, we confirmed the effectiveness of optical flow sensors equipped with phosphor-integrated pillars.

키워드

과제정보

본 논문은 해양수산부 재원으로 선박해양플랜트연구소의 기본사업인 "수중환경 모니터링을 위한 스마트센서 기반기술 개발"에 의해 수행되었습니다(PES4830).

참고문헌

  1. H. Bleckmann, Eds., Reception of Hydrodynamic Stimuli in Auatic and Semiaquatic Animals, in Zoology, W. Rathmayer, Gustav Fischer-Verlag, New York, pp. 1-115, 1994.
  2. H. Herzog, A. Klein, H. Bleckmann, P. Holok, S. Schmitz, G. Siebke, S. Tatzner, M. Lacher, and S. Steltenkamp, "µbiomimetic flow-sensors-introducing light-guiding PDMS structures into MEMS", Bioinspir. Biomim., Vol. 10, No. 3, p. 036001, 2015.
  3. Y. Zhai, X. Zheng, and G. Xie, "Fish Lateral Line Inspired Flow Sensors and Flow-aided Control: A Review", J. Bionic. Eng., Vol. 18, pp. 264-291, 2021. https://doi.org/10.1007/s42235-021-0034-y
  4. X. Zheng, M. Xiong, and G. Xie, "Data-driven modeling for superficial hydrodynamic pressure variations of two swimming robotic fish with leader-follower formation", Proc. of IEEE Int. Conf. on Systems, Man and Cybernetics (SMC), pp. 4331-4336, Bari, Italy, 2019.
  5. W.-K. Yen, D. M. Sierra, and J. Guo, "Controlling a robotic fish to swim along a wall using hydrodynamic pressure feedback", IEEE J. Ocean. Eng., Vol. 43, No. 2, pp. 369-380, 2018. https://doi.org/10.1109/JOE.2017.2785698
  6. T. Salumae and M. Kruusmaa, "Flow-relative control of an underwater robot", Proc. R. Soc. A: Math. Phys. Eng., Vol. 469, No. 2153, p. 20120671, 2013.
  7. S. Grosse and W. Schroder, "The Micro-Pillar Shear-Stress Sensor MPS3 for Turbulent Flow", Sensors, Vol. 9, No. 4, pp. 2222-2251, 2009. https://doi.org/10.3390/s90402222
  8. M. Asadnia, A. G. P. Kottapalli, J. Miao, M. E. Warkiani, and M. S. Triantafyllou, "Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena", J. R. Soc. Interface, Vol. 12, No. 111, p. 20150322, 2015.
  9. Y. Yang, N. Nguyen, N. Chen, M. Lockwood, C. Tucker, H. Hu, H. Bleckmann, C. Liu, and D. L. Jones, "Artificial lateral line with biomimetic neuromasts to emulate fish sensing", Bioinspir. Biomim., Vol. 5, No. 1, p. 016001, 2010.
  10. L.-G. Tran, and W.-T. Park, "Biomimetic Flow Sensor for Detecting Flow Rate and Direction as an Application for Maneuvering Autonomous Underwater Vehicle", Int. J. Precis. Eng. Manuf. - Green Technol., Vol. 9, No. 1, pp. 163-173, 2022. https://doi.org/10.1007/s40684-020-00282-8
  11. J. P. Wissman, K. Sampath, S. E. Freeman, and C. A. Rohde, "Capacitive Bio-Inspired Flow Sensing Cupula", Sensors, Vol. 19, No. 11, pp. 2639(1)-2639(25), 2019. https://doi.org/10.1109/JSEN.2018.2879233
  12. Y. Jiang, Z. Ma, J. Fu, and D. Zhang, "Development of a Flexible Artificial Lateral Line Canal System for Hydrodynamic Pressure Detection", Sensors, Vol. 17, No. 6, p. 1220(1)-1220(10), 2017. https://doi.org/10.1109/JSEN.2016.2633501
  13. A. Klein and H. Bleckmann, "Determination of object position, vortex shedding frequency and flow velocity using artificial lateral line canals", Beilstein J. Nanotechnol., Vol. 2, No. 1, pp. 276-283, 2011. https://doi.org/10.3762/bjnano.2.32
  14. H. Herzog, S. Steltenkamp, A. Klein, S. Tatzner, E. Schulze, and H. Bleckmann, "Micro-Machined Flow Sensors Mimicking Lateral Line Canal Neuromasts", Micromachines, Vol. 6, No. 8, pp. 1189-1212, 2015. https://doi.org/10.3390/mi6081189
  15. Z. Zhang, Y. Kang, N. Yao, J. Pan, W. Yu, Y. Tang, Y. Xu, L. Wang, L. Zhang, and L. Tong, "A Multifunctional Airflow Sensor Enabled by Optical Micro/nanofiber", Adv. Fiber. Mater., Vol. 3, pp. 359-367, 2021. https://doi.org/10.1007/s42765-021-00097-5
  16. B. J. Wolf, J. A. S. Morton, W. N. MacPherson, and S. M. V. Netten, "Bio-inspired all-optical artificial neuromast for 2D flow sensing", Bioinspir. Biomim., Vol. 13, No. 2, pp. 023013(1)-023013(11), 2018. https://doi.org/10.1088/1748-3190/aaa786