과제정보
본 논문은 해양수산부 재원으로 선박해양플랜트연구소의 기본사업인 "수중환경 모니터링을 위한 스마트센서 기반기술 개발"에 의해 수행되었습니다(PES4830).
참고문헌
- H. Bleckmann, Eds., Reception of Hydrodynamic Stimuli in Auatic and Semiaquatic Animals, in Zoology, W. Rathmayer, Gustav Fischer-Verlag, New York, pp. 1-115, 1994.
- H. Herzog, A. Klein, H. Bleckmann, P. Holok, S. Schmitz, G. Siebke, S. Tatzner, M. Lacher, and S. Steltenkamp, "µbiomimetic flow-sensors-introducing light-guiding PDMS structures into MEMS", Bioinspir. Biomim., Vol. 10, No. 3, p. 036001, 2015.
- Y. Zhai, X. Zheng, and G. Xie, "Fish Lateral Line Inspired Flow Sensors and Flow-aided Control: A Review", J. Bionic. Eng., Vol. 18, pp. 264-291, 2021. https://doi.org/10.1007/s42235-021-0034-y
- X. Zheng, M. Xiong, and G. Xie, "Data-driven modeling for superficial hydrodynamic pressure variations of two swimming robotic fish with leader-follower formation", Proc. of IEEE Int. Conf. on Systems, Man and Cybernetics (SMC), pp. 4331-4336, Bari, Italy, 2019.
- W.-K. Yen, D. M. Sierra, and J. Guo, "Controlling a robotic fish to swim along a wall using hydrodynamic pressure feedback", IEEE J. Ocean. Eng., Vol. 43, No. 2, pp. 369-380, 2018. https://doi.org/10.1109/JOE.2017.2785698
- T. Salumae and M. Kruusmaa, "Flow-relative control of an underwater robot", Proc. R. Soc. A: Math. Phys. Eng., Vol. 469, No. 2153, p. 20120671, 2013.
- S. Grosse and W. Schroder, "The Micro-Pillar Shear-Stress Sensor MPS3 for Turbulent Flow", Sensors, Vol. 9, No. 4, pp. 2222-2251, 2009. https://doi.org/10.3390/s90402222
- M. Asadnia, A. G. P. Kottapalli, J. Miao, M. E. Warkiani, and M. S. Triantafyllou, "Artificial fish skin of self-powered micro-electromechanical systems hair cells for sensing hydrodynamic flow phenomena", J. R. Soc. Interface, Vol. 12, No. 111, p. 20150322, 2015.
- Y. Yang, N. Nguyen, N. Chen, M. Lockwood, C. Tucker, H. Hu, H. Bleckmann, C. Liu, and D. L. Jones, "Artificial lateral line with biomimetic neuromasts to emulate fish sensing", Bioinspir. Biomim., Vol. 5, No. 1, p. 016001, 2010.
- L.-G. Tran, and W.-T. Park, "Biomimetic Flow Sensor for Detecting Flow Rate and Direction as an Application for Maneuvering Autonomous Underwater Vehicle", Int. J. Precis. Eng. Manuf. - Green Technol., Vol. 9, No. 1, pp. 163-173, 2022. https://doi.org/10.1007/s40684-020-00282-8
- J. P. Wissman, K. Sampath, S. E. Freeman, and C. A. Rohde, "Capacitive Bio-Inspired Flow Sensing Cupula", Sensors, Vol. 19, No. 11, pp. 2639(1)-2639(25), 2019. https://doi.org/10.1109/JSEN.2018.2879233
- Y. Jiang, Z. Ma, J. Fu, and D. Zhang, "Development of a Flexible Artificial Lateral Line Canal System for Hydrodynamic Pressure Detection", Sensors, Vol. 17, No. 6, p. 1220(1)-1220(10), 2017. https://doi.org/10.1109/JSEN.2016.2633501
- A. Klein and H. Bleckmann, "Determination of object position, vortex shedding frequency and flow velocity using artificial lateral line canals", Beilstein J. Nanotechnol., Vol. 2, No. 1, pp. 276-283, 2011. https://doi.org/10.3762/bjnano.2.32
- H. Herzog, S. Steltenkamp, A. Klein, S. Tatzner, E. Schulze, and H. Bleckmann, "Micro-Machined Flow Sensors Mimicking Lateral Line Canal Neuromasts", Micromachines, Vol. 6, No. 8, pp. 1189-1212, 2015. https://doi.org/10.3390/mi6081189
- Z. Zhang, Y. Kang, N. Yao, J. Pan, W. Yu, Y. Tang, Y. Xu, L. Wang, L. Zhang, and L. Tong, "A Multifunctional Airflow Sensor Enabled by Optical Micro/nanofiber", Adv. Fiber. Mater., Vol. 3, pp. 359-367, 2021. https://doi.org/10.1007/s42765-021-00097-5
- B. J. Wolf, J. A. S. Morton, W. N. MacPherson, and S. M. V. Netten, "Bio-inspired all-optical artificial neuromast for 2D flow sensing", Bioinspir. Biomim., Vol. 13, No. 2, pp. 023013(1)-023013(11), 2018. https://doi.org/10.1088/1748-3190/aaa786