과제정보
본 연구는 정부 (과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임 (NRF-2022R1C1C1009200).
참고문헌
- H. R. Lim, H. S. Kim, R. Qazi, Y. T. Kwon, J. W. Jeong, and W. H. Yeo, "Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment", Adv Mater., Vol. 32, No. 15, p. 1901924, 2020.
- Y. Zhou, C. Wan, Y. Yang, H. Yang, S. Wang, Z. Dai, K. Ji, H. Jiang, X. Chen, and Y. Long, "Highly Stretchable, Elastic, and Ionic Conductive Hydrogel for Artificial Soft Electronics", Adv. Funct. Mater., Vol. 29, No. 1, p. 1806220, 2019.
- M. Zhong, L. Zhang, X. Liu, Y. Zhou, M. Zhang, Y. Wang, L. Yang, and D. Wei, "Wide linear range and highly sensitive flexible pressure sensor based on multistage sensing process for health monitoring and human-machine interfaces", Chem. Eng. J., Vol. 412, p. 128649, 2021.
- T. C. Duc, J. F. Creemer, and P. M. Sarro, "Piezoresistive cantilever beam for force sensing in two dimensions", IEEE Sen. J., Vol. 7, No. 1, pp. 96-104, 2006. https://doi.org/10.1109/JSEN.2006.886992
- J. Lee, S. Kim, J. Lee, D. Yang, B. C. Park, S. Ryu, and I. Park, "A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection", Nanoscale, Vol. 6, No. 20, pp. 11932-11939, 2014. https://doi.org/10.1039/C4NR03295K
- M. Go, X. Qi, P. Matteini, B. Hwang, and S. Lim, "High resolution screen-printing of carbon black/carbon nanotube composite for stretchable and wearable strain sensor with controllable sensitivity", Sens. Actuators A Phys., Vol. 332, p. 113098, 2011.
- S. H. Ha, S. H. Ha, M. B. Jeon, J. H. Cho, and J. M. Kim, "Highly sensitive and selective multidimensional resistive strain sensors based on a stiffness-variant stretchable substrate", Nanoscale, Vol. 10, No. 11, pp. 5105-5113, 2018. https://doi.org/10.1039/C7NR08118A
- Z. Tang, S. Jia, F. Wang, C. Bian, Y. Chen, Y. Wang, and B. Li, "Highly stretchable core-sheath fibers via wet-spinning for wearable strain sensors", ACS Appl. Mater. Interfaces, Vol. 10, No. 7, pp. 6624-6635, 2018. https://doi.org/10.1021/acsami.7b18677
- J. Park, D. S. Kim, Y. Yoon, A. Shanmugasundaram, and D. W. Lee, "Crack-based sensor by using the UV curable polyurethane-acrylate coated film with V-Groove arrays", Micromachines, Vol. 14, No. 1, pp. 62(1)-62(10), 2022. https://doi.org/10.3390/mi14010001
- B. Park, J. Kim, D. Kang, C. Jeong, K. S. Kim, J. U. Kim, P. J. Yoo, and T. I. Kim, "Dramatically enhanced mechanosensitivity and signal-to-noise ratio of nanoscale crack-based sensors: effect of crack depth", Adv. Mater., Vol. 28, No. 37, pp. 8130-8137, 2016. https://doi.org/10.1002/adma.201602425
- D. Kang, P.V. Pikhitsa, Y.W. Choi, C. Lee, S.S. Shin, L. Piao, B. Park, K.-Y. Suh, T.-I. Kim, and M. Choi, "Ultrasensitive mechani-cal crack-based sensor inspired by the spider sensory system", Nature, Vol. 516, No. 7530, pp. 222-226, 2014. https://doi.org/10.1038/nature14002
- Z. Han, L. Liu, J. Zhang, Q. Han, K. Wang, H. Song, Z. Wang, Z. Jiao, S. Niu, and L. Ren, "High-performance flexible strain sensor with bio-inspired crack arrays", Nanoscale, Vol. 10, No. 32, pp. 15178-151786, 2018. https://doi.org/10.1039/C8NR02514B
- T. Lee, Y.W. Choi, G. Lee, P.V. Pikhitsa, D. Kang, S.M. Kim, and M. Choi, "Transparent ITO mechanical crack-based pressure and strain sensor", J. Mater. Chem. C., Vol. 4, No. 42, pp. 9947-9953, 2016. https://doi.org/10.1039/C6TC03329F
- Q. Zhong, Y. Li, and G. Zhang, "Two-dimensional MXene-based and MXene-derived photocatalysts: Recent developments and perspectives", Chem. Eng. J., Vol. 409, p. 128099, 2021.
- K. R. G. Lim, M. Shekhirev, B. C. Wyatt, B. Anasori, Y. Gogotsi, and Z. W. Seh, "Fundamentals of MXene synthesis", Nat. Synth., Vol. 1, No. 8, pp. 601-614, 2022. https://doi.org/10.1038/s44160-022-00104-6