DOI QR코드

DOI QR Code

The Effect of Soil Amended with β-glucan under Drought Stress in Ipomoea batatas L.

𝛽-glucan 토양혼합에 따른 고구마의 가뭄피해 저감 효과

  • Jung-Ho Shin (Department of Integrated Food, Bioscience and Biotechnology) ;
  • Hyun-Sung Kim (Department of Bioenergy Science and Technology, Chonnam National University) ;
  • Gwan-Ju Seong (Department of Bioenergy Science and Technology, Chonnam National University) ;
  • Won Park (National Institute of Crop Science, Rural Development Administration) ;
  • Sung-Ju Ahn (Department of Bioenergy Science and Technology, Chonnam National University)
  • 신정호 (전남대학교 융합식품바이오공학과) ;
  • 김현성 (전남대학교 바이오에너지공학과) ;
  • 성관주 (전남대학교 바이오에너지공학과) ;
  • 박원 (농촌진흥청 국립식량과학원) ;
  • 안성주 (전남대학교 바이오에너지공학과)
  • Received : 2023.09.11
  • Accepted : 2023.09.24
  • Published : 2023.09.30

Abstract

Biopolymer is a versatile material used in food processing, medicine, construction, and soil reinforcement. 𝛽-glucan is one of the biopolymers that improves the soil water content and ion adsorption in a drought or toxic metal contaminated land for plant survival. We analyzed drought stress damage reduction in sweet potatoes (Ipomoea batatas L. cv. Sodammi) by measuring the growth and major protein expression and activity under 𝛽-glucan soil amendment. The result showed that sweet potato leaf length and width were not affected by drought stress for 14 days, but sweet potatoes grown in 𝛽-glucan-amended soil showed an effect in preventing wilting caused by drought in phenotypic changes. Under drought stress, sweet potato leaves did not show any changes in electrolyte leakage, but the relative water content was higher in sweet potatoes grown in 𝛽-glucan-amended soil than in normal soil. 𝛽-glucan soil amendment increased the expression of plasma membrane (PM) H+-ATPase, but it decreased the aquaporin PIP2 (plasma membrane intrinsic protein 2) in sweet potatoes under drought stress. Moreover, water maintenance affected the PM H+-ATPase activity, which contributed to tolerance under drought stress. These results indicate that 𝛽-glucan soil amendment improves the soil water content during drought and affects the water supply in sweet potatoes. Consequently, 𝛽-glucan is a potential material for maintaining soil water contents, and analysis of the major PM proteins is one of the indicators for evaluating the biopolymer effect on plant survival under drought stress.

𝛽-glucan은 바이오폴리머 (biopolymer)의 한 종류로 식품 및 의약품 산업에 이용되고 있으며, 최근 친환경신소재로서 제방강화에 이용되거나 토양에 배합하여 식생을 보호하는 연구가 이루어지고 있다. 본 연구에서는 바이오폴리머 중 𝛽-glucan의 토양혼합 유무와 가뭄처리에 따른 괴근작물 고구마 (Ipomoea batatas L., 품종명 소담미)의 표현형, 생장, 그리고 주요 단백질의 발현 및 활성 변화를 분석하였다. 가뭄 스트레스 하에서 𝛽-glucan 토양혼합에 따른 고구마의 엽장 및 엽폭의 생장, 그리고 전해질유출도에서 큰 차이가 나타나지 않았으나. 상대수분함량은 통계적으로 유의성을 보여주었다. 가뭄스트레스 내성에 관여된 주요 원형질막 (plasma membrane, PM) 단백질의 발현과 활성을 분석하였을 때, 1차 능동수송체 PM H+-ATPase은 𝛽-glucan 토양혼합 조건과 가뭄스트레스에 하에서 상대적으로 높은 발현과 활성을 유지하였으나, 수분수송단백질 아쿠아포린 plasma membrane intrinsic protein 2 (PIP2)은 𝛽-glucan 토양혼합 조건과 가뭄스트레스에 의해 원형질막에서의 분포가 감소하였다. 이 결과는 𝛽-glucan의 토양혼합이 가뭄스트레스 하에서 토양수분 보유력을 향상시켜 고구마의 가뭄 스트레스와 관련된 원형질막 단백질들이 내성에 유리하게 발현됨을 보여준다. 결론적으로 이 연구는 바이오폴리머를 활용한 토양생태를 조절하는 기술로써 가뭄에 따른 식생의 생장 및 피해를 판단하는데 유효할 것이라 판단된다.

Keywords

Acknowledgement

본 연구는 국토교통부 물관리연구사업 (사업번호: 18AWMP-B114119-03)과 2023년 광주광역시 (광주테크노파크) 대학 혁신역량강화 기획 지원사업의 지원에 의해 이루어진 결과로 이에 감사드립니다.

References

  1. An, J.H., Jeong, H., and Kim, E. 2018. Effects of the β-Glucan- and Xanthan gum-based Biopolymer on the Performance of Plants Inhabiting in the Riverbank. Ecology and Resilient Infrastructure 5(3): 180-188. https://doi.org/10.17820/ERI.2018.5.3.180
  2. Arif, M.S., Yasmeen, T., Abbas, Z., Ali, S., Rizwan, M., Aljarba, N.H., Abdel-Daim, M.M. 2021. Role of exogenous and endogenous hydrogen sulfide (H2S) on functional traits of plants under heavy metal stresses: a recent perspective. Frontiers in Plant Science 11: 545453.
  3. Barkla, B.J. and Pantoja, O. 2010. Plasma membrane and abiotic stress. In The plant plasma membrane, Springer, pp. 457-470.
  4. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254. https://doi.org/10.1006/abio.1976.9999
  5. Chang, I. and Cho, G.-C. 2012. Strengthening of Korean residual soil with β-1, 3/1, 6-glucan biopolymer. Construction and Building Materials 30: 30-35. https://doi.org/10.1016/j.conbuildmat.2011.11.030
  6. Janicka-Russak, M., KabaLa, K., MLodzinska, E., and KLobus, G. 2010. The role of polyamines in the regulation of the plasma membrane and the tonoplast proton pumps under salt stress. Journal of Plant Physiology 167(4): 261-269. https://doi.org/10.1016/j.jplph.2009.09.010
  7. Jeong, H., Shin, H., Jang, H., and Kim, E. 2020. Effects of β-glucan and Xanthan gum-based Biopolymers on Plant Growth and Competition in the Riverbank. Ecology and Resilient Infrastructure 7(3): 208-217. https://doi.org/10.17820/ERI.2020.7.3.208
  8. Kim, H.-S., Oh, J.-M., Luan, S., Carlson, J.E., and Ahn, S.-J. 2013. Cold stress causes rapid but differential changes in properties of plasma membrane H+-ATPase of camelina and rapeseed. Journal of Plant Physiology 170(9): 828-837. https://doi.org/10.1016/j.jplph.2013.01.007
  9. Kim, H.-S., Park, W., Lee, H.-S., Shin, J.-H., and Ahn, S.-J. 2021. Subcellular Journey of Rare Cold Inducible 2 Protein in Plant Under Stressful Condition. Frontiers in Plant Science 11(2201).
  10. Kim, H.-S., Park, W., Lim, H.-G., Eom, S., Lee, J.-H., Carlson, J.E., and Ahn, S.-J. 2019. NaCl-induced CsRCI2E and CsRCI2F interact with aquaporin CsPIP2; 1 to reduce water transport in Camelina sativa L. Biochemical and Biophysical Research Communications 513(1): 213-218. https://doi.org/10.1016/j.bbrc.2019.03.208
  11. Kim, H.-S., Shin, J.-H., Lee, H.-S., Kim, S., Jang, H.-Y., Kim, E., and Ahn, S.-J. 2022. CsRCI2D enhances high-temperature stress tolerance in Camelina sativa L. through endo-membrane trafficking from the plasma membrane. Plant Science 320: 111294. https://doi.org/10.1016/j.plantsci.2022.111294
  12. Klein, M. and Poverenov, E. 2020. Natural biopolymer-based hydrogels for use in food and agriculture. Journal of the Science of Food and Agriculture 100(6): 2337-2347. https://doi.org/10.1002/jsfa.10274
  13. Li, X., Wang, X., Yang, Y., Li, R., He, Q., Fang, X., and Lin, J. 2011. Single-molecule analysis of PIP2; 1 dynamics and partitioning reveals multiple modes of Arabidopsis plasma membrane aquaporin regulation. The Plant Cell 23(10): 3780-3797. https://doi.org/10.1105/tpc.111.091454
  14. Lim, H.-G., Kim, H.-S., Lee, H.-S., Sin, J.-H., Kim, E.-S., Woo, H.-S., and Ahn, S.-J. 2018. Amended soil with biopolymer positively affects the growth of Camelina sativa L. under drought stress. Ecology and Resilient Infrastructure 5(3): 163-173. https://doi.org/10.17820/ERI.2018.5.3.163
  15. Maurel, C., Boursiac, Y., Luu, D.-T., Santoni, V., Shahzad, Z., and Verdoucq, L. 2015. Aquaporins in plants. Physiological Reviews 95(4): 1321-1358. https://doi.org/10.1152/physrev.00008.2015
  16. Oh, J.-M., Kim, H.-S., Bae, H.-J., and Ahn, S.-J. 2014. Jatropha is vulnerable to cold injury due to impaired activity and expression of plasma membrane H+-ATPase. Acta Physiologiae Plantarum 36(1): 231-241. https://doi.org/10.1007/s11738-013-1404-9
  17. Shin, J.-H., Kim, H.-S., Kim, E., and Ahn, S.-J. 2020. Biopolymer Amended Soil Reduces the Damages of Zn Excess in Camlina sativa L. Ecology and Resilient Infrastructure 7(4): 262-273. https://doi.org/10.17820/ERI.2020.7.4.262
  18. Shin, J.-H., Kim, H.-S., Kim, S., Kim, E., Jang, H., and Ahn, S.-J. 2021. Xanthan Gum Reduces Aluminum Toxicity in Camelina Roots. Ecology and Resilient Infrastructure 8(3): 135-142. https://doi.org/10.17820/ERI.2021.8.3.135
  19. Vahedifard, F., AghaKouchak, A., and Robinson, J.D. 2015. Drought threatens California's levees. Science 349(6250): 799-799. https://doi.org/10.1126/science.349.6250.799-a
  20. Verslues, P.E., Bailey-Serres, J., Brodersen, C., Buckley, T.N., Conti, L., Christmann, A., and Heckman, R.W. 2023. Burning questions for a warming and changing world: 15 unknowns in plant abiotic stress. The Plant Cell 35(1): 67-108. https://doi.org/10.1093/plcell/koac263
  21. Wang, X., Xu, M., Gao, C., Zeng, Y., Cui, Y., Shen, W., and Jiang, L. 2020. The roles of endomembrane trafficking in plant abiotic stress responses. Journal of Integrative Plant Biology 62(1): 55-69. https://doi.org/10.1111/jipb.12895
  22. Yu, Y., Kou, M., Gao, Z., Liu, Y., Xuan, Y., Liu, Y., and Sun, J. 2019. Involvement of phosphatidylserine and triacylglycerol in the response of sweet potato leaves to salt stress. Frontiers in Plant Science 10: 1086.
  23. Yu, Y., Wang, A., Li, X., Kou, M., Wang, W., Chen, X., and Li, Z. 2018. Melatonin-stimulated triacylglycerol breakdown and energy turnover under salinity stress contributes to the maintenance of plasma membrane H+-ATPase activity and K+/Na+ homeostasis in sweet potato. Frontiers in Plant Science 9: 256. https://doi.org/10.3389/fpls.2018.00256
  24. Zhang, Y., Deng, G., Fan, W., Yuan, L., Wang, H., and Zhang, P. 2019. NHX1 and eIF4A1-stacked transgenic sweetpotato shows enhanced tolerance to drought stress. Plant Cell Reports 38: 1427-1438. https://doi.org/10.1007/s00299-019-02454-6