DOI QR코드

DOI QR Code

페로브스카이트 실내 광전변환 효율 향상을 위한 ethylenediamine 기반의 표면 결함 부동화 연구

Ethylenediamine Based Surface Defect Passivation for Enhancing Indoor Photovoltaic Efficiency of Perovskite

  • 강석범 (신소재공학과, 고려대학교) ;
  • 윤주웅 (신소재공학과, 고려대학교) ;
  • 김창용 (신소재공학과, 고려대학교) ;
  • 이상헌 (신소재공학과, 고려대학교) ;
  • 이혜민 (신소재공학과, 고려대학교) ;
  • 김동회 (신소재공학과, 고려대학교)
  • Seok Beom Kang (Department of Materials Science and Engineering, Korea University) ;
  • Joo Woong Yoon (Department of Materials Science and Engineering, Korea University) ;
  • Chang Yong Kim (Department of Materials Science and Engineering, Korea University) ;
  • Sangheon Lee (Department of Materials Science and Engineering, Korea University) ;
  • Hyemin Lee (Department of Materials Science and Engineering, Korea University) ;
  • Dong Hoe Kim (Department of Materials Science and Engineering, Korea University)
  • 투고 : 2023.06.12
  • 심사 : 2023.08.22
  • 발행 : 2023.09.30

초록

As the demand for the Internet of Things grows, research into indoor photovoltaics for wireless power is becoming important. In particular, perovskite has attracted considerable attention due to its superior performance compared to other candidates. However, various surface defects present in perovskite are a limiting factor for high performance. In particular, deep-level surface defects caused by uncoordinated Pb2+ ions directly limit charge transport. In low light environments, this appears to be a more significant hurdle. In this study, ethylenediamine, which can provide covalent bonding to uncoordinated Pb2+ ions through nitrogen, was used as a surface treatment material for indoor photovoltaics. X-ray photoelectron spectroscopy confirmed that the uncoordinated Pb2+ ions were effectively passivated by the terminal nitrogen of ethylenediamine. As a consequence, a VOC of 0.998 V, a JSC of 0.139 mA cm-2 and a fill factor of 83.03% were achieved, resulting in an indoor photoelectric conversion efficiency of 38.02%.

키워드

과제정보

이 연구는 2022년 국방과학연구소 미래도전국방기술연구개발사업(No.UI220006TD)의 지원을 받았음.

참고문헌

  1. Pecunia, V., Occhipinti, L. G., Hoye, R. L. Z., "Emerging Indoor Photovoltaic Technologies for Sustainable Internet of Things," Adv. Energy Mater., 11(29), 2100698 (2021).
  2. Teran, A. S., Wong, J., Lim, W., Kim, G., Lee, Y., Blaauw, D., Philips, J. D., "AlGaAs Photovoltaics for Indoor Energy Harvesting in mm-Scale Wireless Sensor," IEEE Trans. Electron Devices, 62(7), 2170-2175 (2015). https://doi.org/10.1109/TED.2015.2434336
  3. Yan, B., Liu, X. S., Lu, W. B., Feng, M. J., Yan, H. J., Li, Z. B., Liu, S. C., Wang, C., Hu, J. S., Xue, D. J., "Indoor photovoltaics awaken the world's first solar cells," Sci. Adv., 8(49), 9923 (2022).
  4. Mathews, I., Kantareddy, S. N., Buonassisi, T., Peters, I. M., "Technology and Market Perspective for Indoor Photovoltaic Cells," Joule, 3(6), 1415-1426 (2019). https://doi.org/10.1016/j.joule.2019.03.026
  5. Kim, G., Lim, J. W., Kim, J., Yun, S. J., Park, M. A., "Transparent Thin-Film Silicon Solar Cells for Indoor Light Harvesting with Conversion Efficiencies of 36% without Photodegradation," ACS Appl. Mater. Interfaces, 12(24), 27122-27130 (2020). https://doi.org/10.1021/acsami.0c04517
  6. Lee, C., Lee, J. H., Lee, H. H., Nam, M., Ko, D. H., "Over 30% Efficient Indoor Organic Photovoltaics Enabled by Morphological Modification Using Two Compatible Non-Fullerene Acceptors," Adv. Energy Mater., 12(22), 2200275 (2022).
  7. Freitag, M., Teuscher, J., Zhang, X., Giordano, F., Liska, P., Hua, J., Zakeeruddin, S. M., Moser, J. M., Gratzel, M., Hagfeldt, A., "Dye-sensitized Solar Cells for Efficient Power Generation under Ambient Lighting," Nat. Photon., 11(6), 372-378 (2017). https://doi.org/10.1038/nphoton.2017.60
  8. Moon, E., Lee, I., Blaauw, D., Phillips, J. D., "High-efficiency Photovoltaic Modules on a Chip for millimeter-scale Energy Harvesting," Prog. Photovolt., 27(6), 540-546 (2019). https://doi.org/10.1002/pip.3132
  9. Kawata, K., Tamaki, K., Kawaraya, M., "Dye-sensitised and Perovskite Solar Cells as Indoor Energy Harvestors," J. Photopolym. Sci. Technol., 28(3), 415-417 (2015). https://doi.org/10.2494/photopolymer.28.415
  10. Gong, O. Y., Han, G. S., Lee, S., Seo, M. K., Sohn, C., Yoon, G. W., Jang, J., Lee, J. M., Choi, J. H., Lee, D. K., Kang, S. B., Choi, M., Park, N. G., Kim, D. H., Jung, H. S., "Van der Waals Force-Assisted Heat-Transfer Engineering for Overcoming Limited Efficiency of Flexible Perovskite Solar Cells," ACS Energy Lett., 7(8), 2893-2903 (2022). https://doi.org/10.1021/acsenergylett.2c01391
  11. Shin, S. J., Alosaimi, G., Choi, M.J., Ann, M. H., Jeon, G. G., Seidel, J., Kim, J., Yun, J. S., Kim, J. H., "Strategic Approach for Frustrating Charge Recombination of Perovskite Solar Cells in Low-Intensity Indoor Light: Insertion of Polar Small Molecules at the Interface of the Electron Transport Layer," ACS Appl. Energy Mater., 5(11), 13234-13242 (2022). https://doi.org/10.1021/acsaem.2c01557
  12. Cheng, R., Chung, C. C., Zhang, H., Liu, F. Z., Wang, W. T., Zhou, Z. W., Wang, S. J., Djurisic, A. B., Feng, S.P., "Tailoring Triple-Anion Perovskite Material for Indoor Light Harvesting with Restrained Halide Segregation and Record High Efficiency Beyond 36%," Adv. Energy Mater., 9(38), 1901980 (2019).
  13. Li, Y. Y., Li, R. M., Lin, Q. Q., "Engineering the Non-Radiative Recombination of Mixed-Halide Perovskites with Optimal Bandgap for Indoor Photovoltaics," Small, 18(26), 2202028 (2022).
  14. He, X. L., Chen, J. Z., Ren, X. D., Zhang, L., Liu, Y. C., Feng, J. S., Fang, J. J., Zhao, K., Liu, S. Z., "40.1% Record Low-Light Solar-Cell Efficiency by Holistic Trap-Passivation using Micrometer-Thick Perovskite Film," Adv. Mater., 33(27), 2100770 (2021).
  15. Li, Z., Zhang, J., Wu, S. F., Deng, X., Li, F. Z., Liu, D. J., Lee, C. C., Lin, F., Lei, D. Y., Chueh, C. C., Zhu, Z. L., Jen, A. K. Y., "Minimized surface deficiency on wide-bandgap perovskite for efficient indoor photovoltaics," 105377, Nano Energy, 78 (2020).
  16. Lu, H. Z., Krishna, A., Zakeeruddin, S.M., Gratzel, M., Hagfeldt, A., "Compositional and Interface Engineering of Organic-Inorganic Lead Halide Perovskite Solar Cells," iScience, 23(8), 101359 (2020). https://doi.org/10.9717/KMMS.2020.23.8.965
  17. Xiong, S. B., Hou, Z. Y., Zou, S. J., Lu, X. S., Yang, J. M., Hao, T. Y., Zhou, Z. H., Xu, J. H., Zeng, Y. H., Xiao, W., Dong, W., Li, D. Q., Wang, X., Hu, Z. G., Sun, L., Wu, Y. N., Liu, X. J., Ding, L. M., Sun, Z. R., Fahlman, M., Bao, Q. Y., "Direct Observation on p- to n-Type Transformation of Perovskite Surface Region during Defect Passivation Driving High Photovoltaic Efficiency," Joule, 5(2), 467-480 (2021). https://doi.org/10.1016/j.joule.2020.12.009
  18. Haider, M. I., Hu, H., Seewald, T., Ahmed, S., Sultan, M., Schmidt-Mende, L., Fakharuddin, A., "Ethylenediamine Vapors-Assisted Surface Passivation of Perovskite Films for Efficient Inverted Solar Cells," Sol. RRL, 7(9), 2201082 (2023).
  19. Li, C., Wang, X., Bi, E., Jiang, F., Park, S. M., Li, Y., Chen, L., Wang, Z., Zeng, L., Chen, H., Liu, Y., Grice, C. R., Abudulimu, A., Chung, J., Xian, Y., Zhu, T., Lai, H., Chen, B., Ellingson, R. J., Fu, F., Ginger, D. S., Song, Z., Sargent, E. H., Yan, Y., "Rational design of Lewis base molecules for stable and efficient inverted perovskite solar cells," Science, 379(6633), 690-694 (2023). https://doi.org/10.1126/science.ade3970
  20. Li, X. T., Hoffman, J. M., Kanatzidis, M. G., "The 2D Halide Perovskite Rulebook: How the Spacer Influences Everything from the Structure to Optoelectronic Device Efficiency," Chem. Rev., 121(4), 2230-2291 (2021). https://doi.org/10.1021/acs.chemrev.0c01006
  21. Zhang, S. S., Gutierrez-Arazluz, L., Yin, J., Wehbe, N., Shao, B. Y., Naphade, R., He, T. Y., Maity, P., Bakr, O. M., Malko, A. V., Mohammed, O, F., "Ultra-Efficient Optical Gain and Lasing in MDACl2-Doped Perovskite Thin Films," Chem. Mater., 34(21), 9786-9794 (2022). https://doi.org/10.1021/acs.chemmater.2c02857
  22. Jacobsson, T. J., Correa-Baena, J. P., Anaraki, E. H., Philippe, B., Stranks, S. D., Bouduban, M. E. F., Tress, W., Schenk, K., Teuscher, J., Moser, J. E., Rensmo, H., Hagfeldt, A., "Unreacted PbI2 as a Double-Edged Sword for Enhancing the Performance of Perovskite Solar Cells," J. Am. Chem. Soc., 138(32), 10331-10343 (2016). https://doi.org/10.1021/jacs.6b06320
  23. Wolff, C. M., Caprioglio, P., Stolterfoht, M., Neher, D., "Nonradiative Recombination in Perovskite Solar Cells: The Role of Interfaces," Adv. Mater., 31(52), 1902762 (2019).
  24. Tress, W., Yavari, M., Domanski, K., Yadav, P., Niesen, B., Baena, J. P. C., Hagfeldt, A., Graetzel, M., "Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells," Energy Environ. Sci., 11(1), 151-165 (2018). https://doi.org/10.1039/C7EE02415K
  25. Le Corre, V. M., Duijnstee, E. A., El Tambouli, O., Ball, J. M., Snaith, H. J., Lim, J., Koster, L. J. A.,"Revealing Charge Carrier Mobility and Defect Densities in Metal Halide Perovskite via Space-Charge-Limited Current Measurements," ACS Energy Lett., 6(3), 1087-1094 (2021). https://doi.org/10.1021/acsenergylett.0c02599
  26. Mott, N. F., Gurney, R. W., Electronic Processes in Ionic Crystals, 274, Dover Publications (1964).
  27. Kao, K. C., Hwang, W., Choi, S., I., Electrical Transport in Solids, 90, Physics Today (1983).
  28. Poorkazem, K., Kelly, T. L., "Improving the stability and decreasing the trap state density of mixed-cation perovskite solar cells through compositional engineering," Sustain. Energ. Fuels, 2(6), 1332-1341 (2018). https://doi.org/10.1039/C8SE00127H