Acknowledgement
The authors are grateful to the Universitas Gadjah Mada Republic of Indonesia for funding this project under the Final Task Recognition 2021 research grant scheme.
References
- Agustina, W., Aditiawati, P., Kusumah, S.S. 2022. Myco-briquettes from sugar palm dregs fibre, cassava dregs and coconut shell charcoal with solid substrate fermentation technology. IOP Conference Series: Earth and Environmental Science 963: 012016.
- Ando, D., Umemura, K. 2021. Chemical structures of adhesive and interphase parts in sucrose/citric acid type adhesive wood-based molding derived from Japanese cedar (Cryptomeria japonica). Polymers 13(23): 4224.
- American Society for Testing and Materials [ASTM]. 2001a. Standard Test Method for Ash in Wood. ASTM D1102-84. ASTM International, West Conshohocken, PA, USA.
- American Society for Testing and Materials [ASTM]. 2001b. Standard Test Method for Ethanol-Toluene Solubility of Wood. ASTM D1107-96. ASTM International, West Conshohocken, PA, USA.
- American Society for Testing and Materials [ASTM]. 2001c. Standard Test Methods for Water Solubility of Wood. ASTM D1110-84. ASTM International, West Conshohocken, PA, USA.
- Bertaud, F., Tapin-Lingua, S., Pizzi, A., Navarrete, P., Petit-Conil, M. 2012. Development of green adhesives for fibreboard manufacturing, using tannins and lignin from pulp mill residues. Cellulose Che- mistry and Technology 46(7-8): 449-455.
- Browning, B.L. 1967. Methods of Wood Chemistry. Interscience, New York, NY, USA.
- Elbersen, W., Oyen, L. 2010. Sugar Palm (Arenga pinnata): Potential of Sugar Palm for Bio-ethanol Production. FACT-Foundation, Wageningen, Netherlands.
- Gam, S., Meth, J.S., Zane, S.G., Chi, C., Wood, B.A., Winey, K.I., Clarke, N., Composto, R.J. 2012. Polymer diffusion in a polymer nanocomposite: Effect of nanoparticle size and polydispersity. Soft Matter 8(24): 6512-6520. https://doi.org/10.1039/c2sm25269d
- Hakim, H.M.A., Supartono, W., Ainuri, M., Karyadi, J.N.W. 2022. Hydrothermal pretreatment optimization of hemicellulose dissolution of sugar palm starch industrial waste. IOP Conference Series: Earth and Environmental Science 1116: 012077.
- Hristov, V., Vlachopoulos, J. 2008. Effects of polymer molecular weight and filler particle size on flow behavior of wood polymer composites. Polymer Composites 29(8): 831-839. https://doi.org/10.1002/pc.20455
- Hwang, J.W., Oh, S.W. 2020a. Mechanical performances of boards made from carbonized rice husk and sawdust: The effect of resin and sawdust addition ratio. Journal of the Korean Wood Science and Technology 48(5): 696-709. https://doi.org/10.5658/WOOD.2020.48.5.696
- Hwang, J.W., Oh, S.W. 2020b. Properties of board manufactured from sawdust, ricehusk and charcoal. Journal of the Korean Wood Science and Technology 48(1): 61-75. https://doi.org/10.5658/WOOD.2020.48.1.61
- Hwang, J.W., Oh, S.W. 2021. Bending strength of board manufactured from sawdust, rice husk and charcoal. Journal of the Korean Wood Science and Technology 49(4): 315-327. https://doi.org/10.5658/WOOD.2021.49.4.315
- Ilyas, R.A., Sapuan, S.M., Kadier, A., Krishnan, S., Atikah, M.S.N., Ibrahim, R., Nazrin, A., Syafiq, R., Misri, S., Huzaifah, M.R.M., Hazrol, M.D. 2020. Mechanical Testing of Sugar Palm Fiber Reinforced Sugar Palm Biopolymer Composites. In: Advanced Processing, Properties, and Applications of Starch and Other Bio-Based Polymers, Ed. by Al-Oqla, F.M. and Sapuan, S.M. Elsevier, Amsterdam, Netherlands.
- Ishak, M.R., Sapuan, S.M., Leman, Z., Rahman, M.Z.A., Anwar, U.M.K., Siregar, J.P. 2013. Sugar palm (Arenga pinnata): Its fibres, polymers and composites. Carbohydrate Polymers 91(2): 699-710. https://doi.org/10.1016/j.carbpol.2012.07.073
- Iswanto, A.H., Hakim, A.R., Azhar, I., Wirjosentono, B., Prabuningrum, D.S. 2020. The physical, mechanical, and sound absorption properties of sandwich particleboard (SPb). Journal of the Korean Wood Sci- ence and Technology 48(1): 32-40. https://doi.org/10.5658/WOOD.2020.48.1.32
- Jamaludin, M.A., Bahari, S.A., Zakaria, M.N., Saipolbahri, N.S. 2020. Influence of rice straw, bagasse, and their combination on the properties of binderless particleboard. Journal of the Korean Wood Science and Technology 48(1): 22-31. https://doi.org/10.5658/WOOD.2020.48.1.22
- Japanese Industrial Standard [JIS]. 2003. Particleboards. JIS A 5908. Japanese Standard Association, Tokyo, Japan.
- Karlinasari, L., Sejati, P.S., Adzkia, U., Arinana, A., Hiziroglu, S. 2021. Some of the physical and mechanical properties of particleboard made from betung bamboo (Dendrocalamus asper). Applied Sciences 11(8): 3682.
- Kollmann, F.F.P., Kuenzi, E.W., Stamm, A.J. 1975. Principles of Wood Science and Technology: II. Wood based Materials. Springer, New York, NY, USA.
- Kusumah, S., Arinana, A., Hadi, Y., Guswenrivo, I., Yoshimura, T., Umemura, K., Tanaka, S., Kanayama, K. 2017. Utilization of sweet sorghum bagasse and citric acid in the manufacturing of particleboard. III: Influence of adding sucrose on the properties of particleboard. BioResources 12(4): 7498-7514. https://doi.org/10.15376/biores.12.4.7498-7514
- Kwon, J.H., Ayrilmis, N., Han, T.H. 2013. Enhancement of flexural properties and dimensional stability of rice husk particleboard using wood strands in face layers. Composites Part B: Engineering 44(1): 728-732. https://doi.org/10.1016/j.compositesb.2012.01.045
- Lim, T.K. 2012. Edible Medicinal and Non-Medicinal Plants: Volume 1, Fruits. Springer, New York, NY, USA.
- Maulana, S., Gumelar, Y., Fatrawana, A., Maulana, M.I., Hidayat, W., Sumardi, I., Wistara, N.J., Lee, S.H., Kim, N.H., Febrianto, F. 2019. Destructive and non-destructive tests of bamboo oriented strand board under various shelling ratios and resin contents. Journal of the Korean Wood Science and Technology 47(4): 519-532. https://doi.org/10.5658/WOOD.2019.47.4.519
- Ministry of Agriculture Republic Indonesia. 2021. Statistical of National Non Leading Estate Crops Commodity 2020-2022. Ministry of Agriculture Republic Indonesia, Jakarta, Indonesia.
- Mogea, J., Seibert, B., Smits, W. 1991. Multipurpose palms: The sugar palm (Arenga pinnata (Wurmb) Merr.). Agroforestry Systems 13: 111-129. https://doi.org/10.1007/BF00140236
- Mukhtar, I., Leman, Z., Ishak, M.R., Zainudin, E.S. 2016. Sugar palm fibre and its composites: A review of recent developments. BioResources 11(4): 10756-10782. https://doi.org/10.15376/biores.11.4.10756-10782
- Okuda, N., Sato, M. 2004. Manufacture and mechanical properties of binderless boards from kenaf core. Journal of Wood Science 50: 53-61. https://doi.org/10.1007/s10086-003-0528-8
- Pontoh, J., Smits, W.T.M. 2015. Some aspects of carbo- hydrate physiology in sugar palm (Arenga pinnata Merr.). IOSR Journal of Agriculture and Veterinary Science 8(8): 13-20.
- Purnavita, S., Sriyana, H.Y. 2013. Production of bio- ethanol from Palm (Arenga pinnata) starch solid waste enzymatically using cellulosic-extract termite. Jurnal Teknologi Pangan dan Hasil Pertanian 8(2): 54-60.
- Raydan, N.D.V., Leroyer, L., Charrier, B., Robles, E. 2021. Recent advances on the development of protein-based adhesives for wood composite materials: A review. Molecules 26(24): 7617.
- Rinawati, D.Y., Reflinur, Dinarti, D., Sudarsono. 2021. Genetic diversity of sugar palm (Arenga pinnata) derived from nine regions in Indonesia based on SSR markers. Biodiversitas 22(9): 3749-3755. https://doi.org/10.13057/biodiv/d220919
- Rofii, M.N., Prayitno, T.A., Suzuki, S. 2016. Dynamic modulus of three-layer boards with different furnish and shelling ratio. Journal of the Korean Wood Science and Technology 44(2): 274-282. https://doi.org/10.5658/WOOD.2016.44.2.274
- Rofii, M.N., Yumigeta, S., Suzuki, S., Prayitno, T.A. 2013. Effects of shelling ratio and particle characteristic on physical properties of three-layered particleboard made from different wood species. Wood Research Journal 4(1): 25-30.
- Sackey, E.K., Semple, K.E., Oh, S.W., Smith, G.D. 2008. Improving core bond strength of particleboard through particle size redistribution. Wood and Fiber Science 40(2): 214-224.
- Sahari, J., Sapuan, S.M., Zainudin, E.S., Maleque, M.A. 2012. Sugar palm tree: A versatile plant and novel source for biofibres, biomatrices, and biocomposites. Polymers from Renewable Resources 3(2): 61-78. https://doi.org/10.1177/204124791200300203
- Sahari, J., Sapuan, S.M., Zainudin, E.S., Maleque, M.A. 2013. Mechanical and thermal properties of environmentally friendly composites derived from sugar palm tree. Materials & Design 49: 285-289. https://doi.org/10.1016/j.matdes.2013.01.048
- Santoso, M., Widyorini, R., Prayitno, T.A., Sulistyo, J. 2017. Bonding performance of maltodextrin and citric acid for particleboard made from nipa fronds. Journal of the Korean Wood Science and Technology 45(4): 432-443. https://doi.org/10.5658/WOOD.2017.45.4.432
- Sanyang, M.L., Ilyas, R.A., Sapuan, S.M., Jumaidin, R. 2018. Sugar Palm Starch-Based Composites for Packaging Applications. In: Bionanocomposites for Packaging Applications, Ed. by Jawaid, M. and Swain, S.K. Springer, Cham, Switzerland.
- Sanyang, M.L., Sapuan, S.M., Jawaid, M., Ishak, M.R., Sahari, J. 2016. Recent developments in sugar palm (Arenga pinnata) based biocomposites and their potential industrial applications: A review. Renew- able and Sustainable Energy Reviews 54: 533-549. https://doi.org/10.1016/j.rser.2015.10.037
- Sucipto, T., Widyorini, R., Prayitno, T.A., Lukmandaru, G. 2020. Properties of a new adhesive composed of gambir-sucrose. Journal of the Korean Wood Science and Technology 48(3): 303-314. https://doi.org/10.5658/WOOD.2020.48.3.303
- Sutiawan, J., Hadi, Y.S., Nawawi, D.S., Abdillah, I.B., Zulfiana, D., Lubis, M.A.R., Nugroho, S., Astuti, D., Zhao, Z., Handayani, M., Lisak, G., Kusumah, S.S., Hermawan, D. 2022. The properties of particleboard composites made from three sorghum (Sorghum bicolor) accessions using maleic acid adhesive. Chemosphere 290: 133163.
- Umemura, K., Inoue, A., Kawai, S. 2003. Development of new natural polymer-based wood adhesives I: Dry bond strength and water resistance of konjac glucomannan, chitosan, and their composites. Journal of Wood Science 49: 221-226. https://doi.org/10.1007/s10086-002-0468-8
- Umemura, K., Sugihara, O., Kawai, S. 2013. Investigation of a new natural adhesive composed of citric acid and sucrose for particleboard. Journal of Wood Science 59: 203-208. https://doi.org/10.1007/s10086-013-1326-6
- Umemura, K., Sugihara, O., Kawai, S. 2015. Investigation of a new natural adhesive composed of citric acid and sucrose for particleboard II: Effects of board density and pressing temperature. Journal of Wood Science 61: 40-44. https://doi.org/10.1007/s10086-014-1437-8
- Widyorini, R., Dewi, G.K., Nugroho, W.D., Prayitno, T.A., Jati, A.S., Tejolaksono, M.N. 2018a. Properties of citric acid-bonded composite board from elephant dung fibers. Journal of the Korean Wood Science and Technology 46(2): 132-142. https://doi.org/10.5658/WOOD.2018.46.2.132
- Widyorini, R., Nugraha, P.A., Rahman, M.Z.A., Prayitno, T.A. 2016a. Bonding ability of a new adhesive composed of citric acid-sucrose for particleboard. BioResources 11(2): 4526-4535. https://doi.org/10.15376/biores.11.2.4526-4535
- Widyorini, R., Umemura, K., Isnan, R., Putra, D.R., Awaludin, A., Prayitno, T.A. 2016b. Manufacture and properties of citric acid-bonded particleboard made from bamboo materials. European Journal of Wood and Wood Product 74: 57-65. https://doi.org/10.1007/s00107-015-0967-0
- Widyorini, R., Umemura, K., Septiano, A., Soraya, D.K., Dewi, G.K., Nugroho, W.D. 2018b. Manufacture and properties of citric acid-bonded composite board made from salacca frond: Effects of maltodextrin addition, pressing temperature, and pressing method. BioResources 13(4): 8662-8676. https://doi.org/10.15376/biores.13.4.8662-8676