DOI QR코드

DOI QR Code

Selected Properties of Particleboard Made from Sugar Palm (Arenga pinnata) Dregs

  • Faza AISYADEA (Departments of Forest Product Technology, Faculty of Forestry, Universitas Gadjah Mada) ;
  • Greitta Kusuma DEWI (Departments of Forest Product Technology, Faculty of Forestry, Universitas Gadjah Mada) ;
  • Ragil WIDYORINI (Departments of Forest Product Technology, Faculty of Forestry, Universitas Gadjah Mada)
  • Received : 2023.02.14
  • Accepted : 2023.07.26
  • Published : 2023.09.25

Abstract

Dregs from the sugar palm (Arenga pinnata) starch industry are considered a waste product of the agricultural industry and have not yet been optimally utilized. Therefore, this study aimed to manufacture particleboards from dregs using different amounts of adhesive and particle size ratios. Sugar palm dregs, which had been separated into fibers and powder/fine particles, were used as raw material for making particleboards. The fiber had an average length of 6.84 ± 3.23 cm, while the fine particles were of a size that passed through size 10 mesh and remained in size 60 mesh. Three ratios of fiber to fine particles (100:0, 75:25, and 50:50 wt%) with three different amounts of sucrose-citric acid adhesive (10, 15, and 20 wt%) were used in this study. Increasing the amount of fine particles and the resin content can improve the physical properties and the internal bond strength of boards made from sugar palm dregs. The fine particles possibly filled the gap between the fibers in the particleboard, while the fibers exhibited a high bending strength. As a result, a high-performance particleboard can be attained by combining the composition ratio of fiber/fine particles and resin content. In this study, particleboards made from fiber/fine particles (75:25 wt%) and adhesive content of 15 wt% and 20 wt% had the mechanical properties that met the requirements of Japanese Industrial Standard (JIS) A 5908 type 18. Sugar palm dregs have the potential to be used as raw materials to create value-added particleboards.

Keywords

Acknowledgement

The authors are grateful to the Universitas Gadjah Mada Republic of Indonesia for funding this project under the Final Task Recognition 2021 research grant scheme.

References

  1. Agustina, W., Aditiawati, P., Kusumah, S.S. 2022. Myco-briquettes from sugar palm dregs fibre, cassava dregs and coconut shell charcoal with solid substrate fermentation technology. IOP Conference Series: Earth and Environmental Science 963: 012016.
  2. Ando, D., Umemura, K. 2021. Chemical structures of adhesive and interphase parts in sucrose/citric acid type adhesive wood-based molding derived from Japanese cedar (Cryptomeria japonica). Polymers 13(23): 4224.
  3. American Society for Testing and Materials [ASTM]. 2001a. Standard Test Method for Ash in Wood. ASTM D1102-84. ASTM International, West Conshohocken, PA, USA.
  4. American Society for Testing and Materials [ASTM]. 2001b. Standard Test Method for Ethanol-Toluene Solubility of Wood. ASTM D1107-96. ASTM International, West Conshohocken, PA, USA.
  5. American Society for Testing and Materials [ASTM]. 2001c. Standard Test Methods for Water Solubility of Wood. ASTM D1110-84. ASTM International, West Conshohocken, PA, USA.
  6. Bertaud, F., Tapin-Lingua, S., Pizzi, A., Navarrete, P., Petit-Conil, M. 2012. Development of green adhesives for fibreboard manufacturing, using tannins and lignin from pulp mill residues. Cellulose Che- mistry and Technology 46(7-8): 449-455.
  7. Browning, B.L. 1967. Methods of Wood Chemistry. Interscience, New York, NY, USA.
  8. Elbersen, W., Oyen, L. 2010. Sugar Palm (Arenga pinnata): Potential of Sugar Palm for Bio-ethanol Production. FACT-Foundation, Wageningen, Netherlands.
  9. Gam, S., Meth, J.S., Zane, S.G., Chi, C., Wood, B.A., Winey, K.I., Clarke, N., Composto, R.J. 2012. Polymer diffusion in a polymer nanocomposite: Effect of nanoparticle size and polydispersity. Soft Matter 8(24): 6512-6520. https://doi.org/10.1039/c2sm25269d
  10. Hakim, H.M.A., Supartono, W., Ainuri, M., Karyadi, J.N.W. 2022. Hydrothermal pretreatment optimization of hemicellulose dissolution of sugar palm starch industrial waste. IOP Conference Series: Earth and Environmental Science 1116: 012077.
  11. Hristov, V., Vlachopoulos, J. 2008. Effects of polymer molecular weight and filler particle size on flow behavior of wood polymer composites. Polymer Composites 29(8): 831-839. https://doi.org/10.1002/pc.20455
  12. Hwang, J.W., Oh, S.W. 2020a. Mechanical performances of boards made from carbonized rice husk and sawdust: The effect of resin and sawdust addition ratio. Journal of the Korean Wood Science and Technology 48(5): 696-709. https://doi.org/10.5658/WOOD.2020.48.5.696
  13. Hwang, J.W., Oh, S.W. 2020b. Properties of board manufactured from sawdust, ricehusk and charcoal. Journal of the Korean Wood Science and Technology 48(1): 61-75. https://doi.org/10.5658/WOOD.2020.48.1.61
  14. Hwang, J.W., Oh, S.W. 2021. Bending strength of board manufactured from sawdust, rice husk and charcoal. Journal of the Korean Wood Science and Technology 49(4): 315-327. https://doi.org/10.5658/WOOD.2021.49.4.315
  15. Ilyas, R.A., Sapuan, S.M., Kadier, A., Krishnan, S., Atikah, M.S.N., Ibrahim, R., Nazrin, A., Syafiq, R., Misri, S., Huzaifah, M.R.M., Hazrol, M.D. 2020. Mechanical Testing of Sugar Palm Fiber Reinforced Sugar Palm Biopolymer Composites. In: Advanced Processing, Properties, and Applications of Starch and Other Bio-Based Polymers, Ed. by Al-Oqla, F.M. and Sapuan, S.M. Elsevier, Amsterdam, Netherlands.
  16. Ishak, M.R., Sapuan, S.M., Leman, Z., Rahman, M.Z.A., Anwar, U.M.K., Siregar, J.P. 2013. Sugar palm (Arenga pinnata): Its fibres, polymers and composites. Carbohydrate Polymers 91(2): 699-710. https://doi.org/10.1016/j.carbpol.2012.07.073
  17. Iswanto, A.H., Hakim, A.R., Azhar, I., Wirjosentono, B., Prabuningrum, D.S. 2020. The physical, mechanical, and sound absorption properties of sandwich particleboard (SPb). Journal of the Korean Wood Sci- ence and Technology 48(1): 32-40. https://doi.org/10.5658/WOOD.2020.48.1.32
  18. Jamaludin, M.A., Bahari, S.A., Zakaria, M.N., Saipolbahri, N.S. 2020. Influence of rice straw, bagasse, and their combination on the properties of binderless particleboard. Journal of the Korean Wood Science and Technology 48(1): 22-31. https://doi.org/10.5658/WOOD.2020.48.1.22
  19. Japanese Industrial Standard [JIS]. 2003. Particleboards. JIS A 5908. Japanese Standard Association, Tokyo, Japan.
  20. Karlinasari, L., Sejati, P.S., Adzkia, U., Arinana, A., Hiziroglu, S. 2021. Some of the physical and mechanical properties of particleboard made from betung bamboo (Dendrocalamus asper). Applied Sciences 11(8): 3682.
  21. Kollmann, F.F.P., Kuenzi, E.W., Stamm, A.J. 1975. Principles of Wood Science and Technology: II. Wood based Materials. Springer, New York, NY, USA.
  22. Kusumah, S., Arinana, A., Hadi, Y., Guswenrivo, I., Yoshimura, T., Umemura, K., Tanaka, S., Kanayama, K. 2017. Utilization of sweet sorghum bagasse and citric acid in the manufacturing of particleboard. III: Influence of adding sucrose on the properties of particleboard. BioResources 12(4): 7498-7514. https://doi.org/10.15376/biores.12.4.7498-7514
  23. Kwon, J.H., Ayrilmis, N., Han, T.H. 2013. Enhancement of flexural properties and dimensional stability of rice husk particleboard using wood strands in face layers. Composites Part B: Engineering 44(1): 728-732. https://doi.org/10.1016/j.compositesb.2012.01.045
  24. Lim, T.K. 2012. Edible Medicinal and Non-Medicinal Plants: Volume 1, Fruits. Springer, New York, NY, USA.
  25. Maulana, S., Gumelar, Y., Fatrawana, A., Maulana, M.I., Hidayat, W., Sumardi, I., Wistara, N.J., Lee, S.H., Kim, N.H., Febrianto, F. 2019. Destructive and non-destructive tests of bamboo oriented strand board under various shelling ratios and resin contents. Journal of the Korean Wood Science and Technology 47(4): 519-532. https://doi.org/10.5658/WOOD.2019.47.4.519
  26. Ministry of Agriculture Republic Indonesia. 2021. Statistical of National Non Leading Estate Crops Commodity 2020-2022. Ministry of Agriculture Republic Indonesia, Jakarta, Indonesia.
  27. Mogea, J., Seibert, B., Smits, W. 1991. Multipurpose palms: The sugar palm (Arenga pinnata (Wurmb) Merr.). Agroforestry Systems 13: 111-129. https://doi.org/10.1007/BF00140236
  28. Mukhtar, I., Leman, Z., Ishak, M.R., Zainudin, E.S. 2016. Sugar palm fibre and its composites: A review of recent developments. BioResources 11(4): 10756-10782. https://doi.org/10.15376/biores.11.4.10756-10782
  29. Okuda, N., Sato, M. 2004. Manufacture and mechanical properties of binderless boards from kenaf core. Journal of Wood Science 50: 53-61. https://doi.org/10.1007/s10086-003-0528-8
  30. Pontoh, J., Smits, W.T.M. 2015. Some aspects of carbo- hydrate physiology in sugar palm (Arenga pinnata Merr.). IOSR Journal of Agriculture and Veterinary Science 8(8): 13-20.
  31. Purnavita, S., Sriyana, H.Y. 2013. Production of bio- ethanol from Palm (Arenga pinnata) starch solid waste enzymatically using cellulosic-extract termite. Jurnal Teknologi Pangan dan Hasil Pertanian 8(2): 54-60.
  32. Raydan, N.D.V., Leroyer, L., Charrier, B., Robles, E. 2021. Recent advances on the development of protein-based adhesives for wood composite materials: A review. Molecules 26(24): 7617.
  33. Rinawati, D.Y., Reflinur, Dinarti, D., Sudarsono. 2021. Genetic diversity of sugar palm (Arenga pinnata) derived from nine regions in Indonesia based on SSR markers. Biodiversitas 22(9): 3749-3755. https://doi.org/10.13057/biodiv/d220919
  34. Rofii, M.N., Prayitno, T.A., Suzuki, S. 2016. Dynamic modulus of three-layer boards with different furnish and shelling ratio. Journal of the Korean Wood Science and Technology 44(2): 274-282. https://doi.org/10.5658/WOOD.2016.44.2.274
  35. Rofii, M.N., Yumigeta, S., Suzuki, S., Prayitno, T.A. 2013. Effects of shelling ratio and particle characteristic on physical properties of three-layered particleboard made from different wood species. Wood Research Journal 4(1): 25-30.
  36. Sackey, E.K., Semple, K.E., Oh, S.W., Smith, G.D. 2008. Improving core bond strength of particleboard through particle size redistribution. Wood and Fiber Science 40(2): 214-224.
  37. Sahari, J., Sapuan, S.M., Zainudin, E.S., Maleque, M.A. 2012. Sugar palm tree: A versatile plant and novel source for biofibres, biomatrices, and biocomposites. Polymers from Renewable Resources 3(2): 61-78. https://doi.org/10.1177/204124791200300203
  38. Sahari, J., Sapuan, S.M., Zainudin, E.S., Maleque, M.A. 2013. Mechanical and thermal properties of environmentally friendly composites derived from sugar palm tree. Materials & Design 49: 285-289. https://doi.org/10.1016/j.matdes.2013.01.048
  39. Santoso, M., Widyorini, R., Prayitno, T.A., Sulistyo, J. 2017. Bonding performance of maltodextrin and citric acid for particleboard made from nipa fronds. Journal of the Korean Wood Science and Technology 45(4): 432-443. https://doi.org/10.5658/WOOD.2017.45.4.432
  40. Sanyang, M.L., Ilyas, R.A., Sapuan, S.M., Jumaidin, R. 2018. Sugar Palm Starch-Based Composites for Packaging Applications. In: Bionanocomposites for Packaging Applications, Ed. by Jawaid, M. and Swain, S.K. Springer, Cham, Switzerland.
  41. Sanyang, M.L., Sapuan, S.M., Jawaid, M., Ishak, M.R., Sahari, J. 2016. Recent developments in sugar palm (Arenga pinnata) based biocomposites and their potential industrial applications: A review. Renew- able and Sustainable Energy Reviews 54: 533-549. https://doi.org/10.1016/j.rser.2015.10.037
  42. Sucipto, T., Widyorini, R., Prayitno, T.A., Lukmandaru, G. 2020. Properties of a new adhesive composed of gambir-sucrose. Journal of the Korean Wood Science and Technology 48(3): 303-314. https://doi.org/10.5658/WOOD.2020.48.3.303
  43. Sutiawan, J., Hadi, Y.S., Nawawi, D.S., Abdillah, I.B., Zulfiana, D., Lubis, M.A.R., Nugroho, S., Astuti, D., Zhao, Z., Handayani, M., Lisak, G., Kusumah, S.S., Hermawan, D. 2022. The properties of particleboard composites made from three sorghum (Sorghum bicolor) accessions using maleic acid adhesive. Chemosphere 290: 133163.
  44. Umemura, K., Inoue, A., Kawai, S. 2003. Development of new natural polymer-based wood adhesives I: Dry bond strength and water resistance of konjac glucomannan, chitosan, and their composites. Journal of Wood Science 49: 221-226. https://doi.org/10.1007/s10086-002-0468-8
  45. Umemura, K., Sugihara, O., Kawai, S. 2013. Investigation of a new natural adhesive composed of citric acid and sucrose for particleboard. Journal of Wood Science 59: 203-208. https://doi.org/10.1007/s10086-013-1326-6
  46. Umemura, K., Sugihara, O., Kawai, S. 2015. Investigation of a new natural adhesive composed of citric acid and sucrose for particleboard II: Effects of board density and pressing temperature. Journal of Wood Science 61: 40-44. https://doi.org/10.1007/s10086-014-1437-8
  47. Widyorini, R., Dewi, G.K., Nugroho, W.D., Prayitno, T.A., Jati, A.S., Tejolaksono, M.N. 2018a. Properties of citric acid-bonded composite board from elephant dung fibers. Journal of the Korean Wood Science and Technology 46(2): 132-142. https://doi.org/10.5658/WOOD.2018.46.2.132
  48. Widyorini, R., Nugraha, P.A., Rahman, M.Z.A., Prayitno, T.A. 2016a. Bonding ability of a new adhesive composed of citric acid-sucrose for particleboard. BioResources 11(2): 4526-4535. https://doi.org/10.15376/biores.11.2.4526-4535
  49. Widyorini, R., Umemura, K., Isnan, R., Putra, D.R., Awaludin, A., Prayitno, T.A. 2016b. Manufacture and properties of citric acid-bonded particleboard made from bamboo materials. European Journal of Wood and Wood Product 74: 57-65. https://doi.org/10.1007/s00107-015-0967-0
  50. Widyorini, R., Umemura, K., Septiano, A., Soraya, D.K., Dewi, G.K., Nugroho, W.D. 2018b. Manufacture and properties of citric acid-bonded composite board made from salacca frond: Effects of maltodextrin addition, pressing temperature, and pressing method. BioResources 13(4): 8662-8676. https://doi.org/10.15376/biores.13.4.8662-8676