DOI QR코드

DOI QR Code

Radiochemical behavior of nitrogen species in high temperature water

  • Received : 2022.10.04
  • Accepted : 2023.05.15
  • Published : 2023.09.25

Abstract

The water radiolysis in-core at light water reactors (LWRs) produces various radicals with other ionic species/molecules and radioactive nitrogen species in the reactor coolant. Nitrogen species can exist in many different chemical forms and recirculate in water and steam, and consequently contribute to what extent the environmental safety at nuclear power plants. Therefore, a clear understanding of formation kinetics and chemical behaviors of nitrogen species under irradiation is crucial for better insight into the characteristics of major radioactive species released to the main steam or relevant coolant systems and eventually development of advanced processes/methodologies to enhance the environmental safety at nuclear power plants. This paper thus focuses on basic principles on electrochemical interaction kinetics of radiolytic molecules and various nitrogen species in high temperature water, fundamental approaches for calculating thermodynamic values to predict their stability and domain in LWRs, and the effect of nitrogen species on crevice chemistry/corrosion and intergranular stress corrosion cracking (IGSCC) susceptibility of structure materials in high temperature water.

Keywords

Acknowledgement

One of co-authors (Y-J Kim) expresses his sincere appreciation for the financial support by the FNC Technology Co. Ltd.

References

  1. F.P. Ford, Quantitative prediction of environmentally assisted cracking, Corrosion 52 (5) (1996) 375-395. https://doi.org/10.5006/1.3292125
  2. P.M. Scott, Stress corrosion cracking in pressurized water reactors-interpretation, modeling, and remedies, Corrosion 56 (8) (2000) 771-782. https://doi.org/10.5006/1.3280580
  3. T. Shoji, Progress in mechanistic understanding of BWR SCC and implication to predictions of SCC growth behavior in plants, in: W.A. Stevenson (Ed.), Proceedings of 11th International Conference on Environmental Degradation in Nuclear Power Systems e Water Reactors vols. 10-14, 2003, pp. 588-599. Aug.
  4. P. Scott, P. Combrade, R. Kilian, P. Andresen, Y.J. Kim, Status Review of Initiation of Environmentally Assisted Cracking and Short Crack Growth, Report 1011788, EPRI, Palo Alto, 2005. October.
  5. G.S. Was, P.L. Andresen, Stress corrosion cracking behavior of alloys in aggressive nuclear reactor core environments, Corrosion 63 (1) (2007) 19-45. https://doi.org/10.5006/1.3278331
  6. S.J. Zinkle, G.S. Was, Materials challenges in nuclear energy, Acta Mater. 61 (2013) 735-758. https://doi.org/10.1016/j.actamat.2012.11.004
  7. P.L. Andresen, in: D. Feron, R. Staehle (Eds.), Understanding and Predicting Stress Corrosion Cracking (SCC) in Hot Water, European Federation of Corrosion Publications No. 67: Ch.5 in "Stress Corrosion Cracking of Nickel Based Alloys in Water-Cooled Nuclear Reactors-The Coriou Effect", Elsevier, 2016, pp. 169-238.
  8. D. Feron, C. Guerre, F. Martin, Historical review of alloy 600 stress corrosion cracking: from the coriou effect to the quantitative micro-nano approach, Corrosion 75 (3) (2019) 267-273. https://doi.org/10.5006/2942
  9. J. Kysela, M. Dimitko, V.A. Yurmanov, V.F. Tiakov, Primary coolant chemistry in VVER units, Nucl. Eng. Des. 160 (1996) 185-192. https://doi.org/10.1016/0029-5493(95)01096-3
  10. C.C. Lin, Radiochemistry in Nuclear Power Reactors, Nuclear Science Series, NAS-NS-3119, National Academy Press, Washington D.C., 1996.
  11. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solution, NACE, Houston, TX, 1972.
  12. J.W. Cobble, R.C. Murray Jr., P.J. Turner, K. Chen, High-Temperature Thermodynamic Data for Species in Aqueous Solution, EPRI NP, 1982, p. 2400.
  13. C.M. Chen, K. Aral, G.J. Theus, Computer-calculated potential pH diagram to 300℃, EPRI NP-3137 1-3 (1983). Project 1167-2, June.
  14. Y.J. Kim, P.L. Andresen, Data quality, issues, and guidelines for electrochemical corrosion potential measurement in high temperature water, Corrosion 59 (7) (2003) 584-596. https://doi.org/10.5006/1.3277589
  15. Y.J. Kim, Effect of Water Chemistry on Corrosion Behavior of 304SS in 288℃ Water, October, International Conference on Water Chemistry of Nuclear Reactor Systems", San Francisco, CA, 2004, pp. 11-14, 545-554.
  16. R.C. Weast, CRC Handbook of Chemistry and Physics, 57th Edition, CRC Press, Cleveland, OH, 1976.
  17. D.F. Taylor, Thermodynamic properties of metal-water systems at elevated temperatures, J. Electrochem. Soc. 125 (5) (1978) 808-812. https://doi.org/10.1149/1.2131553
  18. C.E. Wicks, P.E. Block, Thermodynamic Properties of 65 Elements-Their Oxides, Halides, Carbides and Nitrides, vol. 605, Bureau of Mines, US Government Printing Office, Bulletin, 1963.
  19. J.W. Cobble, Thermodynamic properties of high temperature aqueous solutions. VI. Applications of entropy correspondence to thermodynamics and kinetics, J. Am. Chem. Soc. 86 (1964) 5394-5401. https://doi.org/10.1021/ja01078a005
  20. L. Yang, X. Sun, F.R. Steward, D.R. Morris, Measurements of Henry's law constant for hydrogen in water utilizing a palladium differential resistance sensor, Ber. Bmenges. Phys. Chem. 102 (5) (1998) 780-785. https://doi.org/10.1002/bbpc.19981020512
  21. D.R. Morris, L. Yang, F. Giraudeau, X. Sun, F.R. Steward, Henry's law constant for hydrogen in natural water and deuterium in heavy water, Phys. Chem. Chem. Phys. 6 (2001) 1043-1046. https://doi.org/10.1039/b007732l
  22. L. Haar, Thermodynamic properties of ammonia as an ideal gas, J. Res. Natl. Bureau of Standards-A, Phys. Chem. 72A (2) (1968) 207-216. https://doi.org/10.6028/jres.072A.020
  23. L. Haar, J.S. Gallagher, Thermodynamic properties of ammonia, J. Phys. Chem. Ref. Data 7 (1978) 635-792. https://doi.org/10.1063/1.555579
  24. C. Sousa-Silva, N. Hesketh, S.N. Yurchenko, C. Hill, J. Tennyson, High temperature partition functions and thermodynamic data for ammonia and phosphine, J. Quant. Spectrosc. Radiat. Transfer 142 (2014) 66-74. https://doi.org/10.1016/j.jqsrt.2014.03.012
  25. D.M. Himmelblau, Solubilities of inert gases in water, J. Chem. Eng. Data 5 (1) (1960) 10-15. https://doi.org/10.1021/je60005a003
  26. V.I. Baranenko, V.S. Sisoev, L.N. Fal'kovskii, V.S. Krov, A.I. Piontkovskii, A.N. Musienko, The solubility of nitrogen in water, At. Energ. 68 (2) (1990) 133-135. https://doi.org/10.1007/BF02069879
  27. G.R. Dey, Nitrogen compounds' formation in aqueous solutions under high ionizing radiation: an overview, Radiat. Phys. Chem. 80 (2001) 394-402. https://doi.org/10.1016/j.radphyschem.2010.10.010
  28. Y. Etho, H. Karasawa, E. Ibe, M. Sakagami, Radiolysis of N2-H2O system, J. Nucl. Sci. Technol. 24 (1987) 672-674. https://doi.org/10.1080/18811248.1987.9735864
  29. C.C. Lin, Chemical behavior and steam transport of nitrogen-13 in BWR primary system, J. Radioanal. Nucl. Chem. 130 (1989) 129-139. https://doi.org/10.1007/BF02037707
  30. E. Ibe, H. Karasawa, S. Uchida, Radiation chemistry of radioactive nitrogen species in BWR reactor core, J. Nucl. Sci. Technol. 28 (4) (1991) 347-355. https://doi.org/10.1080/18811248.1991.9731367
  31. M.T. Dmitriev, Doses of ionizing radiation affecting the composition of the atmosphere at radiation laboratory, At. Energ. 16 (3) (1964) 282-283. https://doi.org/10.1007/BF01122992
  32. T. Rigg, G. Scholes, J. Weiss, Chemical actions of ionising radiations in solutions: the action of X-rays on ammonia in aqueous solutions, J. Chem. Soc. (Lond.) 580 (1952) 3034-3038.
  33. P. Dwibedy, K. Kishore, G.R. Dey, P.N. Moorthy, Nitrite Formation in the radiolysis of aerated aqueous solutions of ammonia, Radiat. Phys. Chem. 48 (1996) 743-747. https://doi.org/10.1016/S0969-806X(96)00037-0
  34. B. Hickel, K. Sehested, Reaction of hydroxyl radicals with ammonia in a liquid water at elevated temperature, Radiat. Phys. Chem. 39 (1992) 355-357.
  35. B.M. Gordon, The effect of chloride and oxygen on the stress corrosion cracking of SS: review of literature, Mater. Perform. 19 (1980) 29-38.
  36. L.G. Ljungberg, D. Cubicciotti, M. Trolle, Effects of impurities on the IGSCC of stainless steel in high temperature water, Corrosion 44 (2) (1988) 66-72. https://doi.org/10.5006/1.3583909
  37. P.L. Andresen, Effects of nitrate on the stress corrosion cracking of sensitized stainless steel in high temperature water, in: Proc. 7th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors, Breckenridge, CO, 1995, p. 609. August 7-10.
  38. B.T. Timofeev, V.A. Fedorova, Corrosion and mechanical strength of NPP material welded joint, Int. J. Pres. Ves. Pip. 64 (1995) 25-42. https://doi.org/10.1016/0308-0161(94)00060-V