DOI QR코드

DOI QR Code

The DISNY facility for sub-cooled flow boiling performance analysis of CRUD deposited zirconium alloy cladding under pressurized water reactor condition: Design, construction, and operation

  • Ji Yong Kim (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Yunju Lee (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Ji Hyun Kim (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • In Cheol Bang (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST))
  • Received : 2023.01.06
  • Accepted : 2023.06.02
  • Published : 2023.09.25

Abstract

The CRUD on the fuel cladding under the pressurized water reactor (PWR) operating condition causes several issues. The CRUD can act as thermal resistance and increases the local cladding temperature which accelerate the corrosion process. The hideout of boron inside the CRUD results in axial offset anomaly and reduces the plant's shutdown margin. Recently, there are efforts to revise the acceptance criteria of emergency core cooling systems (ECCS), and additionally require the modeling of the thermal resistance effect of the CRUD during the performance analysis. There is an urgent need for the evaluation of the effect of the CRUD deposition on the cladding heat transfer under PWR operating conditions, but the experimental database is very limited. The experimental facility called DISNY was designed and constructed to analyze the CRUD-related multi-physical phenomena, and the performance analysis of the constructed DISNY facility was conducted. The thermal-hydraulic and water chemistry conditions to simulate the CRUD growth under PWR operating conditions were established. The design characteristics and feasibility of the DISNY facility were validated by the MARS-KS code analysis and separate performance tests. In the current study, detailed design features, design validation results, and future utilization plans of the proposed DISNY facility are presented.

Keywords

Acknowledgement

This work was supported by the Nuclear Safety Research Program through the Korea Foundation Of Nuclear Safety (KoFONS) using the financial resource granted by the Nuclear Safety and Security Commission (NSSC) of the Republic of Korea. (No. 2106022).

References

  1. J.W. Yeon, I.K. Choi, K.K. Park, H.M. Kwon, K. Song, Chemical analysis of fuel crud obtained from Korean nuclear power plants, J. Nucl. Mater. 404 (2010) 160-164, https://doi.org/10.1016/j.jnucmat.2010.07.024.
  2. J. Deshon, Evaluation of Fuel Cladding Corrosion and Corrosion Product Deposits from Callaway Cycle, 14, 2006. Palo Alto, CA, www.epri.com.
  3. G. Wang, A. Byers, M. Young, Simulated Fuel Crud Thermal Conductivity Measurements under Pressurized Water Reactor Conditions, 2011. Palo Alto, CA, www.epri.com.
  4. J. Deshon, D. Hussey, B. Kendrick, J. Mcgurk, J. Secker, M. Short, Pressurized water reactor fuel crud and corrosion modeling, JOM 63 (2011) 64-72. www.tms.org/jom.html. https://doi.org/10.1007/s11837-011-0141-z
  5. M.P. Short, D. Hussey, B.K. Kendrick, T.M. Besmann, C.R. Stanek, S. Yip, Multiphysics modeling of porous CRUD deposits in nuclear reactors, J. Nucl. Mater. 443 (2013) 579-587, https://doi.org/10.1016/j.jnucmat.2013.08.014.
  6. P. Cohen, Heat and mass transfer for boiling in porous deposits with chimenys, AlChe Symphsium Series 70 (1972) 71-80.
  7. C. Pan, B.G. Jones, A.J. Machiels, Concentration levels of solutes in porous deposits with chimneys under WICK boiling conditions, Nucl. Eng. Des. 99 (1987) 317-327. https://doi.org/10.1016/0029-5493(87)90130-0
  8. D.Y. Yeo, H.C. No, Modeling heat transfer through chimney-structured porous deposit formed in pressurized water reactors, Int. J. Heat Mass Tran. 108 (2017) 868-879, https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2016.12.046.
  9. J. Henshaw, J.C. McGurk, H.E. Sims, A. Tuson, S. Dickinson, J. Deshon, A model of chemistry and thermal hydraulics in PWR fuel crud deposits, J. Nucl. Mater. 353 (2006) 1-11, https://doi.org/10.1016/J.JNUCMAT.2005.01.028.
  10. I.U. Haq, N. Cinosi, M. Bluck, G. Hewitt, S. Walker, Modelling heat transfer and dissolved species concentrations within PWR crud, Nucl. Eng. Des. 241 (2011) 155-162, https://doi.org/10.1016/J.NUCENGDES.2010.10.018.
  11. N. Cinosi, I. Haq, M. Bluck, S.P. Walker, The effective thermal conductivity of crud and heat transfer from crud-coated PWR fuel, Nucl. Eng. Des. 241 (2011) 792-798, https://doi.org/10.1016/J.NUCENGDES.2010.12.015.
  12. S. Seo, B. Park, S.J. Kim, H.C. Shin, S.J. Lee, M. Lee, S. Choi, BOTANI: high-fidelity multiphysics model for boron chemistry in CRUD deposits, Nucl. Eng. Technol. 53 (2021) 1676e1685, https://doi.org/10.1016/J.NET.2020.11.008.
  13. D.Y. Yeo, H.C. No, Modeling film boiling within chimney-structured porous media and heat pipes, Int. J. Heat Mass Tran. 124 (2018) 576-585, https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2018.03.093.
  14. M. Jin, M. Short, Multiphysics modeling of two-phase film boiling within porous corrosion deposits, J. Comput. Phys. 316 (2016) 504-518, https://doi.org/10.1016/J.JCP.2016.03.013.
  15. P. Saha, N. Aksan, J. Andersen, J. Yan, J.P. Simoneau, L. Leung, F. Bertrand, K. Aoto, H. Kamide, Issues and future direction of thermal-hydraulics research and development in nuclear power reactors, Nucl. Eng. Des. 264 (2013) 3-23, https://doi.org/10.1016/j.nucengdes.2012.07.023.
  16. J. Deshon, PWR Axial Offset Anomaly (AOA) Guidelines, Revision 1, Palo Alto, CA, 2004.
  17. R. Hu, M.S. Kazimi, M.E. Leyse, CONSIDERING THE THERMAL RESISTANCE OF CRUD IN LOCA ANALYSIS, 101, Transaction of the American Nuclear Society, 2009, pp. 590-592.
  18. J. Lee, H. Jeong, Y. Bang, Thermal resistance effects of crud and oxide layers to the safety analysis, in: 2018 TOPFUEL, Prague, Czech Republic, 2018.
  19. I. Dumnernchanvanit, N.Q. Zhang, S. Robertson, A. Delmore, M.B. Carlson, D. Hussey, M.P. Short, Initial experimental evaluation of crud-resistant materials for light water reactors, J. Nucl. Mater. 498 (2018) 1-8, https://doi.org/10.1016/J.JNUCMAT.2017.10.010.
  20. S.H. Baek, H.S. Shim, J.G. Kim, D.H. Hur, Effect of chemical etching of fuel cladding surface on crud deposition behavior in simulated primary water of PWRs at 328 C, Ann. Nucl. Energy 116 (2018) 69-77, https://doi.org/10.1016/J.ANUCENE.2018.02.030.
  21. S.H. Baek, H.S. Shim, J.G. Kim, D.H. Hur, Effects of heat flux on fuel crud deposition and sub-cooled nucleate boiling in simulated PWR primary water at 13 MPa, Ann. Nucl. Energy 133 (2019) 178-185, https://doi.org/10.1016/J.ANUCENE.2019.05.022.
  22. W.A. Byers, G. Wang, M.Y. Young, J. Deshon, Simulation of PWR crud, in: ICONE22, Prague, Czech Republic, 2014.
  23. G. Wang, W.A. Byers, M.Y. Young, J. Deshon, Z. Karoutas, R.L. Oelrich, Thermal conductivity measurement for simulated PWR crud, in: ICONE21, Chengdu, China, 2013.
  24. Z. Karoutas, G. Wang, W.A. Byers, Critical heat flux and crud WALT loop measurements for westinghouse accident tolerant fuel, in: 2019 TOPFUEL, Seattle, WA, 2019.
  25. R. v Macbeth, R. Trenberth, R.W. Wood, An Investigation into the Effect of "CRUD" Deposits on Surface Temperature, Dry-Out and Pressure Drop, with Forced Convection Boiling of Water at 69 Bar in an Annular Test Section, UKAEA Reactor Group, 1971.
  26. J. Buongiorno, Can corrosion and CRUD actually improve safety margins in LWRs? Ann. Nucl. Energy 63 (2014) 9-21, https://doi.org/10.1016/j.anucene.2013.07.019.
  27. J.Y. Kim, H.J. Kim, I.C. Bang, Design study of CRUD thermal properties characterization facility DISNY under pressurized water reactor normal operating condition, in: Advances in Thermal Hydraulics, ATH 2022), Anaheim, CA, USA, 2022, pp. 563-574, https://doi.org/10.13182/T126-38228.
  28. J.Y. Kim, Y. Lee, J. Ham, J.H. Kim, I.C. Bang, Establishment of experimental facility to investigate the sub-cooled boiling heat transfer characteristics of fouled cladding surface at PWR conditions, The KSFM Journal of Fluid Machinery 25 (2022) 12-21, https://doi.org/10.5293/kfma.2022.25.5.012.
  29. Khnp, Final Safety Analysis Report for Hanbit Unit 5, 6, 1997 (Chapter 4).
  30. Khnp, Final Safety Analysis Report for Shin-Kori Unit 3, 4, 2008 (Chapter 4).
  31. B.A. Khuwaileh, F.I. Al-Hamadi, D. Hartanto, Z. Said, M. Ali, On the performance of nanofluids in APR 1400 PLUS7 assembly: neutronics, Ann. Nucl. Energy 144 (2020), 107508, https://doi.org/10.1016/J.ANUCENE.2020.107508.
  32. J.-J. Jeong, K.S. Ha, B.D. Chung, W.J. Lee, Development of a multi-dimensional thermal-hydraulic system code, MARS 1.3. 1, Ann. Nucl. Energy 26 (1999) 1611-1642. https://doi.org/10.1016/S0306-4549(99)00039-0
  33. J.A. Sawicki, Characterization of Corrosion Products on the Callaway Cycle 9 PWR Core, 2001, https://doi.org/10.13140/2.1.3645.4087. Palo Alto, CA.
  34. J. Ham, Y. Lee, S.C. Yoo, M.P. Short, C.B. Bahn, J.H. Kim, Effect of TiN coating on the fouling behavior of crud on pressurized water reactor fuel cladding, J. Nucl. Mater. 549 (2021), 152870, https://doi.org/10.1016/J.JNUCMAT.2021.152870.
  35. Y. Lee, S.C. Yoo, D. Park, J. Ham, J.H. Kim, Chemistry change of CRUD with various metal ion concentration conditions in PWR fuel cladding, in: 20th International Conference on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors, Springer, Snowmass Village, CO, USA, 2022.
  36. Y. Lee, J. Ham, D.H. Park, S.C. Yoo, J.H. Kim, Microstructure change of crud with various heat flux conditions, in: PWR FUEL CLADDING, 2021TOPFUEL, Santander, Spain, 2021.
  37. H.W. Coleman, W.G. Steele, Experimentation, Validation, and Uncertainty Analysis for Engineers, John Wiley & Sons, 2018.
  38. M. Awais, A.A. Bhuiyan, Recent advancements in impedance of fouling resistance and particulate depositions in heat exchangers, Int. J. Heat Mass Tran. 141 (2019) 580-603, https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2019.07.011.
  39. A. Fguiri, C. Marvillet, M.R. Jeday, Estimation of fouling resistance in a phosphoric acid/steam heat exchanger using inverse method, Appl. Therm. Eng. 192 (2021), 116935, https://doi.org/10.1016/J.APPLTHERMALENG.2021.116935.
  40. T.L. Bergman, T.L. Bergman, F.P. Incropera, D.P. Dewitt, A.S. Lavine, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, 2011.
  41. G. Wang, Improved CRUD Heat Transfer Model for Dryout on Fuel Pin Surfaces at PWR Operating Conditions, Doctoral thesis, Pennsylvania State University, 2009.
  42. J.B. Lee, Description Report of ATLAS Facility and Instrumentation (Third Revision), Deajeon, Korea, 2020.
  43. J.H. Lienhard, On the commonality of equations for natural convection from immersed bodies, Int. J. Heat Mass Tran. 16 (1973) 2121-2123, https://doi.org/10.1016/0017-9310(73)90116-6.
  44. F.W. Dittus, L.M.K. Boelter, Heat Transfer in Automobile Radiators of Tubular Type, 443-461, 2, Berkeley Univ. California. Publ. Eng., 1930, p. 13.
  45. W.H. Jens, P.A. Lottes, Analysis of Heat Transfer, Burnout, Pressure Drop and Density Date for High-Pressure Water, Argonne National Lab., 1951.
  46. J.R.S. Thom, W.M. Walker, T.A. Fallon, G.F.S. Reising, Boiling in Subcooled Water during Flow up Heated Tubes or Annuli, Paper Presented at the Symposium on Boiling Heat Transfer in Steam Generating Units and Heat Exchangers, Manchester, England. September 15-16, 1965. Cited in JG Collier, Convective Boiling , Cited in JG Collier, Convective Boiling and Condensation. (1972).
  47. J.C. Chen, Correlation for boiling heat transfer to saturated fluids in convective flow, Ind. Eng. Chem. Process Des. Dev. 5 (1966) 322-329. https://doi.org/10.1021/i260019a023
  48. H.K. Forster, N. Zuber, Dynamics of vapor bubbles and boiling heat transfer, AIChE J. 1 (1955) 531-535. https://doi.org/10.1002/aic.690010425
  49. Youngjae Park, Experimental Study about the Effects of CRUD on Quenching Heat Transfer of Simulated Fuel Rod in Single Flow Channel under PWR Reflood Flow Conditions, Doctoral thesis, Kyunghee University, 2021.
  50. C. Sauder, Ceramic Matrix Composites: Nuclear Applications, Ceramic Matrix Composites: Materials, Modeling and Technology, 2014, pp. 609-646.
  51. D. Lee, B. Elward, P. Brooks, R. Umretiya, J. Rojas, M. Bucci, R.B. Rebak, M. Anderson, Enhanced flow boiling heat transfer on chromium coated zircaloy-4 using cold spray technique for accident tolerant fuel (ATF) materials, Appl. Therm. Eng. 185 (2021), 116347, https://doi.org/10.1016/J.APPLTHERMALENG.2020.116347.