DOI QR코드

DOI QR Code

Dynamic response of a laminated hybrid composite cantilever beam with multiple cracks & moving mass

  • Saritprava Sahoo (Department of Production Engineering, Veer Surendra Sai University of Technology) ;
  • Sarada Prasad Parida (Department of Mechanical Engineering, Templecity Institute of Technology) ;
  • Pankaj Charan Jena (Department of Production Engineering, Veer Surendra Sai University of Technology)
  • Received : 2023.04.03
  • Accepted : 2023.08.08
  • Published : 2023.09.25

Abstract

A novel laminated-hybrid-composite-beam (LHCB) of glass-epoxy infused with flyash and graphene is constructed for this study. The conventional mixture-rule and constitutive-relationship are modified to incorporate filler and lamina orientation. Eringen's non-local-theory is used to include the filler effect. Hamilton's principle based on fifth-order-layer-wise-shear-deformation-theory is applied to formulate the equation of motion. The analogous shear-spring-models for LHCB with multiple-cracks are employed in finite-element-analysis (FEA). Modal-experimentations are conducted (B&K-analyser) and the findings are compared with theoretical and FEA results. In terms of dimensionless relative-natural-frequencies (RNF), the dynamic-response in cantilevered support is investigated for various relative-crack-severities (RCSs) and relative-crack-positions (RCPs). The increase of RCS increases local-flexibility in LHCB thus reductions in RNFs are observed. RCP is found to play an important role, cracks present near the end-support cause an abrupt drop in RNFs. Further, multiple cracks are observed to enhance the nonlinearity of LHCB strength. Introduction of the first to third crack in an intact LHCB results drop of RNFs by 8%, 10%, and 11.5% correspondingly. Also, it is demonstrated that the RNF varies because of the lamina-orientation, and filler addition. For 0° lamina-orientation the RNF is maximum. Similarly, it is studied that the addition of graphene reduces weight and increases the stiffness of LHCB in contrast to the addition of flyash. Additionally, the response of LHCB to moving mass is accessed by appropriately modifying the numerical programs, and it is noted that the successive introduction of the first to ninth crack results in an approximately 40% to 120% increase in the dynamic-amplitude-ratio.

Keywords

References

  1. Ali, B., Abdelkader, B., Noureddine, B. and Boualem, S. (2015), "Numerical analysis of crack propagation in cement PMMA: Application of SED approach", Struct. Eng. Mech., 55(1), 93-109. http://doi.org/10.12989/sem.2015.55.1.093.
  2. Alsaadi, M. (2022), "A study on the delamination and flexural behavior of carbon-and aramid-fiberreinforced epoxy composites with silicon carbide particle inclusions", Mech. Compos. Mater., 57(6), 847-856. http://doi.org/10.1007/s11029-022-10004-7.
  3. Ayoub, A. (2001), "A two-field mixed variational principle for partially connected composite beams", Finite Elem. Anal. Des., 37(11), 929-959. http://doi.org/10.1016/S0168-874X(01)00076-2.
  4. Babu, J. and Davim, J.P. (2020), Glass Fibre-Reinforced Polymer Composites: Materials, Manufacturing and Engineering, Vol. 12, Walter de Gruyter GmbH & Co KG.
  5. Bozyigit, B., Yesilce, Y. and Abdel Wahab, M. (2020), "Free vibration and harmonic response of cracked frames using a single variable shear deformation theory", Struct. Eng. Mech., 74(1), 33-54. https://doi.org/10.12989/sem.2020.74.1.033.
  6. Bozyigit, B., Yesilce, Y. and Abdel Wahab, M. (2020), "Transfer matrix formulations and single variable shear deformation theory for crack detection in beam-like structures", Struct. Eng. Mech., 73(2), 109-121. https://doi.org/10.12989/sem.2020.73.2.109.
  7. Bulut, C.O., Jena, S.P. and Kurt, S. (2020), "Numerical and FEM investigation on dynamic response of damaged cantilever structures carrying transit load", Int. Rev. Mech. Eng., 14(11), 699-707. https://doi.org/10.15866/ireme.v14i11.20126.
  8. Davim, J.P. (2012), Statistical and Computational Techniques in Manufacturing, Springer Science & Business Media.
  9. Davim, J.P. (2017), Green Composites: Materials, Manufacturing and Engineering, De Gruyter, Berlin, Boston.
  10. Ebrahimi, F., Dabbagh, A., Rastgoo, A. and Rabczuk, T. (2020), "Agglomeration effects on static stability analysis of multi-scale hybrid nanocomposite plates", Comput. Mater. Continua, 63, 41-64. http://doi.org/10.32604/cmc.2020.07947.
  11. Ecsedi, I. and Baksa, A. (2016), "Analytical solution for layered composite beams with partial shear interaction based on Timoshenko beam theory", Eng. Struct., 115, 107-117. https://doi.org/10.1016/j.engstruct.2016.02.034.
  12. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. http://doi.org/10.1016/00207225(72)90070-5.
  13. Esen, I. (2013), "A new finite element for transverse vibration of rectangular thin plates under a moving mass", Finite Elem. Anal. Des., 66, 26-35. http://doi.org/10.1016/j.finel.2012.11.005.
  14. Gao, Y., Xiao, W. and Zhu, H, (2019), "Nonlinear vibration of functionally graded nano-tubes using nonlocal strain gradient theory and a two-steps perturbation method", Struct. Eng. Mech., 69(2), 205-219. https://doi.org/10.12989/sem.2019.69.2.205.
  15. Ghafoori, E. and Asghari M. (2010), "Dynamic analysis of laminated composite plates traversed by a moving mass based on a first-order theory", Compos. Struct., 92(8), 1865-1876. http://doi.org/10.1016/j.compstruct.2010.01.011.
  16. Ghannadiasl, A. and Ajirlou, S.K. (2019), "Forced vibration of multi-span cracked Euler-Bernoulli beams using dynamic Green function formulation", Appl. Acoust., 148, 484-494. http://doi.org/10.1016/j.apacoust.2018.12.021.
  17. Ghoneam, S.M. (1995), "Dynamic analysis of open cracked laminated composite beams", Compos. Struct., 32, 3-11. http://doi.org/10.1016/0263-8223(95)00023-2.
  18. Golewski, G.L. and Szostak, B. (2022), "Strength and microstructure of composites with cement matrixes modified by fly ash and active seeds of CSH phase", Struct. Eng. Mech, 82(4), 543-556. https://doi.org/10.12989/sem.2022.82.4.543.
  19. Gorman, D.J. (1978), "Free vibration analysis of the completely free rectangular plate by the method of superposition", J. Sound. Vib., 57, 437-447. https://doi.org/10.1016/0022-460X(78)90322-X.
  20. Han, S.C., Kim, K.D. and Kanok-Nukulchai, W. (2004), "An element-based 9-node resultant shell element for large deformation analysis of laminated composite plates and shells", Struct. Eng. Mech., 18(6), 807. https://doi.org/10.12989/sem.2004.18.6.807.
  21. Huang, X.W. and Zhao, J. (2017), "A cumulative damage model for extremely low cycle fatigue cracking in steel structure", Struct. Eng. Mech., 62(2), 225-236. https://doi.org/10.12989/sem.2017.61.2.225.
  22. Jena, P.C., Parhi, D.R. and Pohit, G. (2016), "Dynamic study of the composite cracked beam by changing the angle of bidirectional fibres", Iran. J. Sci. Technol. Trans. A Sci., 40, 27-37. http://doi.org/10.1007/s40995016-0006-y.
  23. Jena, S.P., Parhi, D.R. and Mishra, D. (2015), "Comparative study on cracked beam with different types of cracks carrying moving mass", Struct. Eng. Mech., 56(5), 797-811. https://doi.org/10.12989/sem.2015.56.5.797.
  24. Jiang, S., Du, C. and Gu, C. (2014), "An investigation into the effects of voids, inclusions and minor cracks on major crack propagation by using XFEM", Struct. Eng. Mech., 49(5), 597-618. http://doi.org/10.12989/sem.2014.49.5.597.
  25. Joseph, S., Bambola, V.A., Sherhtukade, V.V. and Mahanwar, P.A. (2011), "Effect of flyash content, particle size of flyash, and type of silane coupling agents on the properties of recycled poly (ethylene terephthalate)/flyash composites", J. Appl. Polym. Sci., 119, 201-208. https://doi.org/10.1002/app.32449.
  26. Kadivar, M.H. and Mohebpour, S.R. (1998), "Finite element dynamic analysis of unsymmetric composite laminated beams with shear effect and rotary inertia under the action of moving loads", Finite Elem. Anal. Des., 29(3-4), 259-273. http://doi.org/10.1016/S0168-874X(98)00024-9.
  27. Katti, P., Kundan, K.V., Kumar, S. and Bose, S. (2017), "Improved mechanical properties through engineering the interface by poly (ether ether ketone) grafted graphene oxide in epoxy based nanocomposites", Polym., 122, 184-193. https://doi.org/10.1016/j.polymer.2017.06.059.
  28. Kinloch, I.A., Suhr, J., Lou, J., Young, R.J. and Ajayan, P.M. (2018), "Composites with carbon nanotubes & graphene: An outlook", Sci., 362, 547-553. https://doi.org/10.1126/science.aat7439.
  29. Kisa, M. (2004), "Free vibration analysis of a cantilever composite beam with multiple cracks", Compos. Sci. Technol., 64(9), 1391-1402. http://doi.org/10.1016/j.compscitech.2003.11.002.
  30. Krawczuk, M. and Ostachowicz, W.M. (1995), "Modelling and vibration analysis of a cantilever composite beam with a transverse open crack", J. Sound Vib., 183(1), 69-89. http://doi.org/10.1006/jsvi.1995.0239.
  31. Lu, C.F. and Chen, W.Q. (2005), "Free vibration of orthotropic functionally graded beams with various end conditions", Struct. Eng. Mech., 20(4), 465-476. https://doi.org/10.12989/sem.2005.20.4.465.
  32. Meirovitch, L. (1967), Analytical Methods in Vibrations, New York.
  33. Most, T. and Bucher, C. (2005), "A moving least squares weighting function for the element-free Galerkin method which almost fulfills essential boundary conditions", Struct. Eng. Mech., 21(3), 315-332. https://doi.org/10.12989/sem.2005.21.3.315.
  34. Newmark, N.M. (1951), "Test and analysis of composite beams with incomplete interaction", Proc. Soc. Exp. Stress Anal., 199(1), 75-92.
  35. Parhi, D.R. and Dash, A.K. (2011), "Application of neural network and finite element for condition monitoring of structures". Proc. Inst. Mech. Eng., Part C, 225(6), 1329-1339. http://doi.org/10.1177/095440621039588.
  36. Parida, S.P. and Jena, P.C. (2020), "Advances of the shear deformation theory for analyzing the dynamics of laminated composite plates: An overview", Mech. Compos. Mater., 56(4), 455-484. http://doi.org/10.1007/s11029-020-09896-0.
  37. Parida, S.P. and Jena, P.C. (2022a), "Free and forced vibration analysis of flyash/graphene filled laminated composite plates using higher order shear deformation theory", Proc. Inst. Mech. Eng., Part C, 236, 4648-4659. http://doi.org/10.1177/09544062211053181.
  38. Parida, S.P. and Jena, P.C. (2022b), "Selective layer-by-layer fillering and its effect on the dynamic response of laminated composite plates using higher-order theory", J. Vib. Control, 29(11-12), 2473-2488. http://doi.org/10775463221081180. 10775463221081180
  39. Parida, S.P., Jena, P.C. and Dash, R.R., (2022), "Dynamics of rectangular laminated composite plates with selective layer-wise fillering rested on elastic foundation using higher-order layer-wise theory", J. Vib. Control., 10775463221138353. http://doi.org/10775463221138353. 10775463221138353
  40. Patterson, W. and Force, A. (1976), "The Halipin-Tsai equations: A review", Polym. Eng. Sci., 16, 344-352. https://doi.org/10.1002/pen.760160512
  41. Pleskov, P.F. (1952), Theoretical Studies of Composite Wood Structures, Soviet Union. (in Russian) 
  42. Rafiee, M., Nitzsche, F., Laliberte, J., Hind, S., Robitaille, F. and Labrosse, M.R. (2019), "Thermal properties of doubly reinforced fiberglass/epoxy composites with graphene nanoplatelets, graphene oxide & reduced-graphene oxide", Compos. Part B, 164, 1-9. https://doi.org/10.1016/j.compositesb.2018.11.051.
  43. Ravanfar, S.A., Razak, H.A., Ismail, Z. and Hakim, S.J.S. (2016), "A two-step damage identification approach for beam structures based on wavelet transform and genetic algorithm", Meccanica, 51, 635-653. http://doi.org/10.1007/s11012-015-0227-8.
  44. Sahoo, S. and Jena, P.C. (2021), "Preparation and characterization of hybrid laminated composite beams", Adv. Mater. Proc. Technol., 18, 1-4. http://doi.org/10.1080/2374068X.2021.1953924.
  45. Song, M., Gong, Y., Yang, J., Zhu, W. and Kitipornchai, S. (2019), "Free vibration and buckling analyses of edge-cracked functionally graded multilayer graphene nanoplatelet-reinforced composite beams resting on an elastic foundation", J. Sound. Vib., 458, 89-108. http://doi.org/10.1016/j.jsv.2019.06.023.
  46. Song, Q., Liu, Z., Shi, J. and Wan, Y. (2018), "Parametric study of dynamic response of sandwich plate under moving loads", Thin Wall. Struct., 123, 82-99. http://doi.org/10.1016/j.tws.2017.11.012.
  47. Sorrenti, M., Di, M., Majak, Sciuva, J. and Auriemma, F. (2020), "Static response and buckling loads of multilayered composite beams using the refined zigzag theory and higher-order Haar wavelet method", Mech. Compos. Mater., 57, 1-18. http://doi.org/10.1007/s11029-021-09929-2.
  48. Tanzadeh, H. and Amoushahi, H. (2020), "Analysis of laminated composite plates based on different shear deformation plate theories", Struct. Eng. Mech., 75(2), 247-269. https://doi.org/10.12989/sem.2020.75.2.247.
  49. Tekili, S., Khadri, Y., Merzoug, B., Daya, E.M. and Daouadji, A. (2017), "Free and forced vibration of beams strengthened by composite coats subjected to moving loads", Mech. Compos. Mater., 52, 789-798. http://doi.org/10.1007/s11029-017-9630-7.
  50. Wang, Y., Xie, K. and Fu, T. (2020), "Size-dependent dynamic stability of a FG polymer microbeam reinforced by graphene oxides", Struct. Eng. Mech., 73(6), 685-698. https://doi.org/10.12989/sem.2020.73.6.685.
  51. Xiang, H.J. and Shi, Z.F. (2011), "Vibration attenuation in periodic composite Timoshenko beams on Pasternak foundation", Struct. Eng. Mech., 40(3), 373-392. https://doi.org/10.12989/sem.2011.40.3.373.
  52. Yue, X., Yue, X. and Borjalilou, V. (2021), "Generalized thermos-elasticity model of nonlocal strain gradient Timoshenko nanobeam", Arch. Civil Mech. Eng., 21, 1-20. http://doi.org/10.1007/s43452-021-00280-w.