References
- Ali, B., Abdelkader, B., Noureddine, B. and Boualem, S. (2015), "Numerical analysis of crack propagation in cement PMMA: Application of SED approach", Struct. Eng. Mech., 55(1), 93-109. http://doi.org/10.12989/sem.2015.55.1.093.
- Alsaadi, M. (2022), "A study on the delamination and flexural behavior of carbon-and aramid-fiberreinforced epoxy composites with silicon carbide particle inclusions", Mech. Compos. Mater., 57(6), 847-856. http://doi.org/10.1007/s11029-022-10004-7.
- Ayoub, A. (2001), "A two-field mixed variational principle for partially connected composite beams", Finite Elem. Anal. Des., 37(11), 929-959. http://doi.org/10.1016/S0168-874X(01)00076-2.
- Babu, J. and Davim, J.P. (2020), Glass Fibre-Reinforced Polymer Composites: Materials, Manufacturing and Engineering, Vol. 12, Walter de Gruyter GmbH & Co KG.
- Bozyigit, B., Yesilce, Y. and Abdel Wahab, M. (2020), "Free vibration and harmonic response of cracked frames using a single variable shear deformation theory", Struct. Eng. Mech., 74(1), 33-54. https://doi.org/10.12989/sem.2020.74.1.033.
- Bozyigit, B., Yesilce, Y. and Abdel Wahab, M. (2020), "Transfer matrix formulations and single variable shear deformation theory for crack detection in beam-like structures", Struct. Eng. Mech., 73(2), 109-121. https://doi.org/10.12989/sem.2020.73.2.109.
- Bulut, C.O., Jena, S.P. and Kurt, S. (2020), "Numerical and FEM investigation on dynamic response of damaged cantilever structures carrying transit load", Int. Rev. Mech. Eng., 14(11), 699-707. https://doi.org/10.15866/ireme.v14i11.20126.
- Davim, J.P. (2012), Statistical and Computational Techniques in Manufacturing, Springer Science & Business Media.
- Davim, J.P. (2017), Green Composites: Materials, Manufacturing and Engineering, De Gruyter, Berlin, Boston.
- Ebrahimi, F., Dabbagh, A., Rastgoo, A. and Rabczuk, T. (2020), "Agglomeration effects on static stability analysis of multi-scale hybrid nanocomposite plates", Comput. Mater. Continua, 63, 41-64. http://doi.org/10.32604/cmc.2020.07947.
- Ecsedi, I. and Baksa, A. (2016), "Analytical solution for layered composite beams with partial shear interaction based on Timoshenko beam theory", Eng. Struct., 115, 107-117. https://doi.org/10.1016/j.engstruct.2016.02.034.
- Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. http://doi.org/10.1016/00207225(72)90070-5.
- Esen, I. (2013), "A new finite element for transverse vibration of rectangular thin plates under a moving mass", Finite Elem. Anal. Des., 66, 26-35. http://doi.org/10.1016/j.finel.2012.11.005.
- Gao, Y., Xiao, W. and Zhu, H, (2019), "Nonlinear vibration of functionally graded nano-tubes using nonlocal strain gradient theory and a two-steps perturbation method", Struct. Eng. Mech., 69(2), 205-219. https://doi.org/10.12989/sem.2019.69.2.205.
- Ghafoori, E. and Asghari M. (2010), "Dynamic analysis of laminated composite plates traversed by a moving mass based on a first-order theory", Compos. Struct., 92(8), 1865-1876. http://doi.org/10.1016/j.compstruct.2010.01.011.
- Ghannadiasl, A. and Ajirlou, S.K. (2019), "Forced vibration of multi-span cracked Euler-Bernoulli beams using dynamic Green function formulation", Appl. Acoust., 148, 484-494. http://doi.org/10.1016/j.apacoust.2018.12.021.
- Ghoneam, S.M. (1995), "Dynamic analysis of open cracked laminated composite beams", Compos. Struct., 32, 3-11. http://doi.org/10.1016/0263-8223(95)00023-2.
- Golewski, G.L. and Szostak, B. (2022), "Strength and microstructure of composites with cement matrixes modified by fly ash and active seeds of CSH phase", Struct. Eng. Mech, 82(4), 543-556. https://doi.org/10.12989/sem.2022.82.4.543.
- Gorman, D.J. (1978), "Free vibration analysis of the completely free rectangular plate by the method of superposition", J. Sound. Vib., 57, 437-447. https://doi.org/10.1016/0022-460X(78)90322-X.
- Han, S.C., Kim, K.D. and Kanok-Nukulchai, W. (2004), "An element-based 9-node resultant shell element for large deformation analysis of laminated composite plates and shells", Struct. Eng. Mech., 18(6), 807. https://doi.org/10.12989/sem.2004.18.6.807.
- Huang, X.W. and Zhao, J. (2017), "A cumulative damage model for extremely low cycle fatigue cracking in steel structure", Struct. Eng. Mech., 62(2), 225-236. https://doi.org/10.12989/sem.2017.61.2.225.
- Jena, P.C., Parhi, D.R. and Pohit, G. (2016), "Dynamic study of the composite cracked beam by changing the angle of bidirectional fibres", Iran. J. Sci. Technol. Trans. A Sci., 40, 27-37. http://doi.org/10.1007/s40995016-0006-y.
- Jena, S.P., Parhi, D.R. and Mishra, D. (2015), "Comparative study on cracked beam with different types of cracks carrying moving mass", Struct. Eng. Mech., 56(5), 797-811. https://doi.org/10.12989/sem.2015.56.5.797.
- Jiang, S., Du, C. and Gu, C. (2014), "An investigation into the effects of voids, inclusions and minor cracks on major crack propagation by using XFEM", Struct. Eng. Mech., 49(5), 597-618. http://doi.org/10.12989/sem.2014.49.5.597.
- Joseph, S., Bambola, V.A., Sherhtukade, V.V. and Mahanwar, P.A. (2011), "Effect of flyash content, particle size of flyash, and type of silane coupling agents on the properties of recycled poly (ethylene terephthalate)/flyash composites", J. Appl. Polym. Sci., 119, 201-208. https://doi.org/10.1002/app.32449.
- Kadivar, M.H. and Mohebpour, S.R. (1998), "Finite element dynamic analysis of unsymmetric composite laminated beams with shear effect and rotary inertia under the action of moving loads", Finite Elem. Anal. Des., 29(3-4), 259-273. http://doi.org/10.1016/S0168-874X(98)00024-9.
- Katti, P., Kundan, K.V., Kumar, S. and Bose, S. (2017), "Improved mechanical properties through engineering the interface by poly (ether ether ketone) grafted graphene oxide in epoxy based nanocomposites", Polym., 122, 184-193. https://doi.org/10.1016/j.polymer.2017.06.059.
- Kinloch, I.A., Suhr, J., Lou, J., Young, R.J. and Ajayan, P.M. (2018), "Composites with carbon nanotubes & graphene: An outlook", Sci., 362, 547-553. https://doi.org/10.1126/science.aat7439.
- Kisa, M. (2004), "Free vibration analysis of a cantilever composite beam with multiple cracks", Compos. Sci. Technol., 64(9), 1391-1402. http://doi.org/10.1016/j.compscitech.2003.11.002.
- Krawczuk, M. and Ostachowicz, W.M. (1995), "Modelling and vibration analysis of a cantilever composite beam with a transverse open crack", J. Sound Vib., 183(1), 69-89. http://doi.org/10.1006/jsvi.1995.0239.
- Lu, C.F. and Chen, W.Q. (2005), "Free vibration of orthotropic functionally graded beams with various end conditions", Struct. Eng. Mech., 20(4), 465-476. https://doi.org/10.12989/sem.2005.20.4.465.
- Meirovitch, L. (1967), Analytical Methods in Vibrations, New York.
- Most, T. and Bucher, C. (2005), "A moving least squares weighting function for the element-free Galerkin method which almost fulfills essential boundary conditions", Struct. Eng. Mech., 21(3), 315-332. https://doi.org/10.12989/sem.2005.21.3.315.
- Newmark, N.M. (1951), "Test and analysis of composite beams with incomplete interaction", Proc. Soc. Exp. Stress Anal., 199(1), 75-92.
- Parhi, D.R. and Dash, A.K. (2011), "Application of neural network and finite element for condition monitoring of structures". Proc. Inst. Mech. Eng., Part C, 225(6), 1329-1339. http://doi.org/10.1177/095440621039588.
- Parida, S.P. and Jena, P.C. (2020), "Advances of the shear deformation theory for analyzing the dynamics of laminated composite plates: An overview", Mech. Compos. Mater., 56(4), 455-484. http://doi.org/10.1007/s11029-020-09896-0.
- Parida, S.P. and Jena, P.C. (2022a), "Free and forced vibration analysis of flyash/graphene filled laminated composite plates using higher order shear deformation theory", Proc. Inst. Mech. Eng., Part C, 236, 4648-4659. http://doi.org/10.1177/09544062211053181.
- Parida, S.P. and Jena, P.C. (2022b), "Selective layer-by-layer fillering and its effect on the dynamic response of laminated composite plates using higher-order theory", J. Vib. Control, 29(11-12), 2473-2488. http://doi.org/10775463221081180. 10775463221081180
- Parida, S.P., Jena, P.C. and Dash, R.R., (2022), "Dynamics of rectangular laminated composite plates with selective layer-wise fillering rested on elastic foundation using higher-order layer-wise theory", J. Vib. Control., 10775463221138353. http://doi.org/10775463221138353. 10775463221138353
- Patterson, W. and Force, A. (1976), "The Halipin-Tsai equations: A review", Polym. Eng. Sci., 16, 344-352. https://doi.org/10.1002/pen.760160512
- Pleskov, P.F. (1952), Theoretical Studies of Composite Wood Structures, Soviet Union. (in Russian)
- Rafiee, M., Nitzsche, F., Laliberte, J., Hind, S., Robitaille, F. and Labrosse, M.R. (2019), "Thermal properties of doubly reinforced fiberglass/epoxy composites with graphene nanoplatelets, graphene oxide & reduced-graphene oxide", Compos. Part B, 164, 1-9. https://doi.org/10.1016/j.compositesb.2018.11.051.
- Ravanfar, S.A., Razak, H.A., Ismail, Z. and Hakim, S.J.S. (2016), "A two-step damage identification approach for beam structures based on wavelet transform and genetic algorithm", Meccanica, 51, 635-653. http://doi.org/10.1007/s11012-015-0227-8.
- Sahoo, S. and Jena, P.C. (2021), "Preparation and characterization of hybrid laminated composite beams", Adv. Mater. Proc. Technol., 18, 1-4. http://doi.org/10.1080/2374068X.2021.1953924.
- Song, M., Gong, Y., Yang, J., Zhu, W. and Kitipornchai, S. (2019), "Free vibration and buckling analyses of edge-cracked functionally graded multilayer graphene nanoplatelet-reinforced composite beams resting on an elastic foundation", J. Sound. Vib., 458, 89-108. http://doi.org/10.1016/j.jsv.2019.06.023.
- Song, Q., Liu, Z., Shi, J. and Wan, Y. (2018), "Parametric study of dynamic response of sandwich plate under moving loads", Thin Wall. Struct., 123, 82-99. http://doi.org/10.1016/j.tws.2017.11.012.
- Sorrenti, M., Di, M., Majak, Sciuva, J. and Auriemma, F. (2020), "Static response and buckling loads of multilayered composite beams using the refined zigzag theory and higher-order Haar wavelet method", Mech. Compos. Mater., 57, 1-18. http://doi.org/10.1007/s11029-021-09929-2.
- Tanzadeh, H. and Amoushahi, H. (2020), "Analysis of laminated composite plates based on different shear deformation plate theories", Struct. Eng. Mech., 75(2), 247-269. https://doi.org/10.12989/sem.2020.75.2.247.
- Tekili, S., Khadri, Y., Merzoug, B., Daya, E.M. and Daouadji, A. (2017), "Free and forced vibration of beams strengthened by composite coats subjected to moving loads", Mech. Compos. Mater., 52, 789-798. http://doi.org/10.1007/s11029-017-9630-7.
- Wang, Y., Xie, K. and Fu, T. (2020), "Size-dependent dynamic stability of a FG polymer microbeam reinforced by graphene oxides", Struct. Eng. Mech., 73(6), 685-698. https://doi.org/10.12989/sem.2020.73.6.685.
- Xiang, H.J. and Shi, Z.F. (2011), "Vibration attenuation in periodic composite Timoshenko beams on Pasternak foundation", Struct. Eng. Mech., 40(3), 373-392. https://doi.org/10.12989/sem.2011.40.3.373.
- Yue, X., Yue, X. and Borjalilou, V. (2021), "Generalized thermos-elasticity model of nonlocal strain gradient Timoshenko nanobeam", Arch. Civil Mech. Eng., 21, 1-20. http://doi.org/10.1007/s43452-021-00280-w.