• 제목/요약/키워드: multiple1-transverse-cracks

검색결과 5건 처리시간 0.017초

Damage propagation in CFRP laminates subjected to low velocity impact and static indentation

  • Aoki, Yuichiro;Suemasu, Hiroshi;Ishikawa, Takashi
    • Advanced Composite Materials
    • /
    • 제16권1호
    • /
    • pp.45-61
    • /
    • 2007
  • This paper describes a damage accumulation mechanism in cross-ply CFRP laminates $[0_2/90_2]_{2S}$ subjected to out-of-plane loading. Drop-weight impact and static indentation tests were carried out, and induced damage was observed by ultrasonic C-scan and an optical microscope. Both tests gave essentially the same results for damage modes, sizes, and load-deformation history. First, a crack occurred in the bottom $0^{\circ}$ layer accompanying some delamination along the crack caused by bending stress. Then, transverse cracks occurred in the middle $90^{\circ}$ layer with decreasing contact force between the specimen and the indenter. Measured local strains near the impact point showed that the stress state changed from a bending dominant state to an in-plane tensile dominant state. A cohesive interface element was used to simulate the propagation of multiple delaminations and transverse cracks under static indentation. Two types of analytical models are considered, one with multiple delaminations and the other with both multiple delaminations and transverse cracks. The damage obtained for the model with only multiple delaminations was quite different from that obtained from the experiment. However, the results obtained from the model with both delaminations and transverse cracks well explain the characteristics of the damage obtained in the experiment. The existence of the transverse cracks is essential to form the characteristic impact damage.

Free vibration analysis of multiple open-edge cracked beams by component mode synthesis

  • Kisa, M.;Brandon, J.A.
    • Structural Engineering and Mechanics
    • /
    • 제10권1호
    • /
    • pp.81-92
    • /
    • 2000
  • This study is an investigation of the effect of cracks on the dynamical characteristics of a cantilever beam, having multiple open-edge transverse cracks. The flexibilities due to crack have been identified for several crack depths and locations. In the study the finite element method and component mode synthesis methods are used. Coupling the components is performed by a flexibility matrix taking into account the interaction forces. Each component is modelled by cantilever beam finite elements with two nodes and three degrees of freedom at each node. The results obtained lead to conclusion that, by using the drop in the natural frequencies and the change in the mode shapes, the presence and nature of cracks in a structure can be detected. There is some counter-evidence, however, that the effects due to multiple cracks may interact to make detection more difficult than for isolated cracks.

Dynamic response of a laminated hybrid composite cantilever beam with multiple cracks & moving mass

  • Saritprava Sahoo;Sarada Prasad Parida;Pankaj Charan Jena
    • Structural Engineering and Mechanics
    • /
    • 제87권6호
    • /
    • pp.529-540
    • /
    • 2023
  • A novel laminated-hybrid-composite-beam (LHCB) of glass-epoxy infused with flyash and graphene is constructed for this study. The conventional mixture-rule and constitutive-relationship are modified to incorporate filler and lamina orientation. Eringen's non-local-theory is used to include the filler effect. Hamilton's principle based on fifth-order-layer-wise-shear-deformation-theory is applied to formulate the equation of motion. The analogous shear-spring-models for LHCB with multiple-cracks are employed in finite-element-analysis (FEA). Modal-experimentations are conducted (B&K-analyser) and the findings are compared with theoretical and FEA results. In terms of dimensionless relative-natural-frequencies (RNF), the dynamic-response in cantilevered support is investigated for various relative-crack-severities (RCSs) and relative-crack-positions (RCPs). The increase of RCS increases local-flexibility in LHCB thus reductions in RNFs are observed. RCP is found to play an important role, cracks present near the end-support cause an abrupt drop in RNFs. Further, multiple cracks are observed to enhance the nonlinearity of LHCB strength. Introduction of the first to third crack in an intact LHCB results drop of RNFs by 8%, 10%, and 11.5% correspondingly. Also, it is demonstrated that the RNF varies because of the lamina-orientation, and filler addition. For 0° lamina-orientation the RNF is maximum. Similarly, it is studied that the addition of graphene reduces weight and increases the stiffness of LHCB in contrast to the addition of flyash. Additionally, the response of LHCB to moving mass is accessed by appropriately modifying the numerical programs, and it is noted that the successive introduction of the first to ninth crack results in an approximately 40% to 120% increase in the dynamic-amplitude-ratio.

철근콘크리트 원형 교각의 횡방향철근 변형률과 항복이후 콘크리트 전단저항 저감 (The Strain of Transverse Steel and Concrete Shear Resistance Degradation after Yielding of Reinforced Concrete Circular Pier)

  • 고성현
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제22권1호
    • /
    • pp.147-157
    • /
    • 2018
  • 철근콘크리트 교량에 대한 대부분의 내진설계기준들은 전체 교량 시스템의 붕괴를 방지하기 위한 성능보장설계를 암시적 또는 명시적으로 적용하고 있다. 이러한 개념 및 규정들을 명시하는 이유는 교량 전체 시스템에 설계지진하중이 작용하는 동안 철근콘크리트 교각들이 완전한 소성회전성능을 발휘할 때까지 구조적인 다른 구성요소들의 취성적인 파괴를 방지하기 위함이다. 이를 위해 철근콘크리트 교량에 대한 내진설계기준들에서는 취성적인 전단파괴를 피하도록 규정하고 있다. 성능보장의 중요한 요소 중의 하나가 교각의 연성거동을 보장하기 위한 전단강도가 충분히 확보되어야 하고 신뢰할 수 있어야 한다. 실험체 8개에 대하여 실험을 수행하였으며 모든 실험체에서 변위비 1.5%에서 다수의 휨-전단 균열이 발생되었고 최종단계까지 균열폭이 증가되었고 균열이 진전되었다. 휨-전단 균열의 각도는 부재 축과 $42^{\circ}{\sim}48^{\circ}$의 범위로 계측되었다. 본 연구에서는 실험에서 계측된 횡방향철근이 부담하는 전단강도에 대한 분석을 중심으로 하였다. 횡방향철근이 부담하는 전단강도, 축력 작용에 의한 전단강도, 콘크리트에 의한 전단강도 등 3요소에 대해 분석하였고 비교하였다. 실험체들의 콘크리트 응력은 도로 교설계기준의 응력한계를 초과하였다.

Reliability of Maintained Hull Girders of Two Bulk Carrier Designs Subjected to Fatigue and Corrosion

  • Soares, C.Guedes;Garbatov, Y.
    • Journal of Ship and Ocean Technology
    • /
    • 제3권1호
    • /
    • pp.27-41
    • /
    • 1999
  • The objective of the paper is to study the impact of changing the traditional hull design of bulk carriers by providing them with a double hull while keeping the same deadweight. It is demonstrated that by introducing the double hull the structural reliability is increased throughout the entire life and also the extend of the needed repair is reduced. The results are obtained with recently developed mathematical tools for the reliability assessment of ship hulls subjected to the existence of multiple cracks both in the stiffeners and in the plating and it models the crack growth process. The effect of corrosion is represented as time dependent. The long-term stress range acting on the elements is defined as a function of the local transverse pressure of the internal cargo and outside sea water combined with the stresses resulting from the longitudinal bending of the hull, which is a combined with the stresses resulting from the longitudinal bending of the hull, which is a combineation of horizontal and vertical bending moments. The effect of maintenance actions is modelled as a stochastic process. The results show that a different design of the midship section improves the structural safety and also the economy with respect to structural repair of bulk carriers.

  • PDF