DOI QR코드

DOI QR Code

Experimental study on RC beams externally bonded by CFRP sheets with and without end self-locking

  • Chaoyang Zhou (National Engineering Research Center of High-speed Railway Construction Technology, Central South University) ;
  • Yanan Yu (National Engineering Research Center of High-speed Railway Construction Technology, Central South University) ;
  • Chengfeng Zhou (National Engineering Research Center of High-speed Railway Construction Technology, Central South University) ;
  • Xuejun He (National Engineering Research Center of High-speed Railway Construction Technology, Central South University) ;
  • Yi Wang (National Engineering Research Center of High-speed Railway Construction Technology, Central South University)
  • Received : 2022.01.19
  • Accepted : 2023.08.09
  • Published : 2023.09.10

Abstract

To avoid debonding failure, a novel type of hybrid anchorage (HA) is proposed in this study that uses a slotted plate to lock the ends of the fiber-reinforced polymer (FRP) sheet in addition to the usual bonding over the substrate of the strengthened member. An experimental investigation was performed on three groups of RC beams, which differed from one another in either concrete strength or steel reinforcement ratio. The test results indicate that the end self-locking of the CFRP sheet can improve the failure ductility, ultimate capacity of the beams and its utilization ratio. Although intermediate debonding occurred in all the strengthened beams, it was not a fatal mode of failure for the three specimens with end anchorage. Among them, FRP rupture occurred in the beam with higher concrete strength and lower steel reinforcement ratio, whereas the other two failed by concrete crushing. The beam strengthened by HA obtained a relatively high percentage of increase in ultimate capacity when the rebar ratio or concrete strength decreased. The expressions in the literature were inspected to calculate the critical loads at intermediate debonding, FRP rupturing and concrete crushing after debonding for the strengthened beam. Then, the necessity of further research is addressed.

Keywords

Acknowledgement

The authors are grateful for the financial support received from the National Natural Science Foundation of China (Grant No. 51878664, 52178308), Science and Technology Research and Development Program Project of China railway group limited (Major Special Project, No.: 2021-Special-04-2).

References

  1. Abolfazl E., Hamid R.S., Alireza M. and Hamid R.R. (2019), "Experimental and analytical investigations of a novel end anchorage for CFRP flexural retrofits", Compos. Part B: Eng., 176, 107309. https://doi.org/10.1016/j.compositesb.2019.107309.
  2. Atheer A., Robin K., Riadh A., Jan C. and Dobromil P. (2021), "Numerical and experimental investigation into the fatigue life of FRP bonded to concrete and anchored with bidirectional fabric patches", Eng. Struct., 239, 112335. https://doi.org/10.1016/j.engstruct.2021.112335.
  3. Attari, B. and Tavakkolizadeh, M. (2019), "An experimental investigation on effect of elevated temperatures on bond strength between externally bonded cfrp and concrete", Steel Compos. Struct., 32(5), 559-569. https://doi.org/10.12989/scs.2019.32.5.559.
  4. Ayesha S., Md. A.A.M., Rayed A. and Y.H. M.A. (2019), "Strengthening of reinforced concrete beams by using fiber-reinforced polymer composites: A review", J. Build. Eng., 25, 100798. https://doi.org/10.1016/j.jobe.2019.100798.
  5. Brena, S.F., Bramblett, R.M., Wood, S.L. and Kreger, M.E. (2003), "Increasing flexural capacity of reinforced concrete beams using carbon fiber-reinforced polymer composites", ACI Struct. J., 100, 36-46. https://doi.org/10.14359/12437.
  6. Ceroni, F. and Pecce, M. (2010), "Evaluation of bond strength in concrete elements externally reinforced with cfrp sheets and anchoring devices", J. Compos. Construc., 14(5), 521-530. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000118.
  7. Chahrour, A. and Soudki, K. (2005), "Flexural response of reinforced concrete beams strengthened with end-anchored partially bonded carbon fiber-reinforced polymer strips", J. Compos. Construct., 9(2), 170-177. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:2(170).
  8. Chen C., Cheng L., Sui L., Xing F., Li D. and Zhou Y.W. (2018), "Design method of end anchored FRP strengthened concrete structures", Eng. Struct., 176, 143-58. https://doi.org/10.1016/j.engstruct.2018.08.081.
  9. CMC (2010), Code for design of concrete structure (GB 50010-2010), China Building Industry Press; Beijing, China.
  10. CMC (2013), Code for design of strengthening concrete structure (GB 50367-2013), China Building Industry Press; Beijing, China.
  11. Cristina B., Pau S., Javier G. and Lluis T. (2020), "Flexural behaviour of FRP reinforced concrete beams strengthened with NSM CFRP strips", Compos. Struct., 241, 112059. https://doi.org/10.1016/j.compstruct.2020.112059.
  12. Dai, J., Harries, K.A. and Yokota, H. (2008), "A critical steel yielding length model for predicting intermediate crack-induced debonding in FRP-strengthened RC members", Steel Compos. Struc., 8, 457-473. https://doi.org/10.12989/scs.2008.8.6.457.
  13. Dai, J., Ueda, T. and Sato, Y. (2005), "Development of the nonlinear bond stress-slip model of fiber reinforced plastics sheet-concrete interfaces with a simple method", J. Compos. Construct., 9(1), 52-62. https://doi.org/10.1061/(ASCE)1090-0268(2005)9:1(52).
  14. Daniel A.P., Jose M., Tiziana R., Humberto V. and Luke B. (2019), "Seismic retrofit schemes with FRP for deficient RC beam-column joints: State-of-the-art review", J. Compos. Construct., 23(4), 031190. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000950.
  15. Enrique del R.C., Ravi K., Scott T.S., Michael C.G. and Jason M.I. (2019), "Design approach for FRP spike anchors in FRP-strengthened RC structures", Compos. Struct., 214, 23-33. https://doi.org/10.1016/j.compstruct.2019.01.100.
  16. Feng, P., Lu, X.Z. and Ye, L.P. (2011), Application of Fiber Reinforced Polymer in Construction: Experiment, Theory and Methodology, China Building Industry Press, Beijing, China. (in Chinese)
  17. Gomez, T.W. (1997), "Durability characteristics of concrete beams externally bonded with frp composite sheets", Cement Concrete Compos., 19, 351-58. https://doi.org/10.1016/S0958-9465(97)00028-0.
  18. Grelle S.V. and Sneed, L.H. (2013), "Review of anchorage systems for externally bonded frp laminates", Int. J. Concrete Struct. Mater., 7, 17-33. https://doi.org/10.1007/s40069-013-0029-0.
  19. Hasnat, A., Islam, M. and Amin, A. (2015), "Enhancing the debonding strain limit for CFRP-strengthened RC beams using U-clamps: identification of design parameters", J. Compos. Construct., 20, 04015039. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000599.
  20. Jin, Q. and Leung, C. (2011), "Fiber reinforced cementitious composites (FRCC) plate for the anchoring of FRP sheet on concrete member", J. Compos. Construct., 15, 790-798. https://doi.org/10.1007/978-3-642-17487-2_8.
  21. Kalfat, R., Al-Mahaidi, R. and Smith, S.T. (2013), "Anchorage devices used to improve the performance of reinforced concrete beams retrofitted with FRP composites: State-of-the-art review", J. Compos. Construct., 17, 14-33. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000276.
  22. Kotynia, R., Abdel, B.H., Neale, K.W. and Ebead, U.A. (2008), "Flexural strengthening of RC beams with externally bonded CFRP systems: Test results and 3D nonlinear FE analysis", J. Compos. Construct., 12, 190-201. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:2(190).
  23. Lamanna, A.J., Bank, L.C. and Scott, D.W. (2001), "Flexural strengthening of RC beams using fasteners and FRP strips", ACI Struct. J., 3, 368-376. https://doi.org/10.14359/10225.
  24. Lee, S. and Moy, S. (2007), "A method for predicting the flexural strength of RC beams strengthened with carbon fiber reinforced polymer", J. Reinforce. Plastics Compos., 26(14), 1383-1401. https://doi.org/10.1177/0731684407079372.
  25. Lezgy-Nazargah, M., Dezhangah, M. and Sepehrinia, M. (2018), "The effects of different frp/concrete bond-slip laws on the 3d nonlinear fe modeling of retrofitted RC beams - a sensitivity analysis", Steel Compos. Struct., 26, 347-360. https://doi.org/10.12989/scs.2018.26.3.347.
  26. Li, J., Wang, Y., Deng, J. and Jia, Y. (2018), "Experimental study on the flexural behaviour of notched steel beams strengthened by prestressed CFRP plate with an end plate anchorage system", Eng. Struct., 171(SEP.15), 29-39. https://doi.org/10.1016/j.engstruct.2018.05.042.
  27. Liu J. (2017), "Behavior and design of pre-loaded RC beams shear-strengthened with prestressed CFRP U-straps", Ph.D. Dissertation, Central South University, China.
  28. Mohammadi, T., Wan, B., Harries, K.A. and Sweriduk, M.E. (2017), "Bond behavior of frp-concrete in presence of intermediate crack debonding failure", J. Compos. Construct., 21(5), 04017018. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000797.
  29. Mostafa, A. and Razaqpur, A.G. (2013), "CFRP anchor for preventing premature debonding of externally bonded FRP laminates from concrete", J. Compos. Construct., 17, 641-50. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000377.
  30. Mostofinejad, D., Hosseini, S.M., Tehrani, B.N., Eftekhar, M.R. andDyari, M. (2019), "Innovative warp and woof strap (WWS) method to anchor the frp sheets in strengthened concrete beams", Construct. Build. Mater., 218(C), 351-364. https://doi.org/10.1016/j.conbuildmat.2019.05.117.
  31. Rusch, H. (1960), "Researches toward a general flexural theory for structural concrete", Am Concrete Inst Journal and Proceedings. https://doi.org/10.14359/8009.
  32. Saadatmanesh H., Malek A.M. (1998), "Design guidelines for flexural strengthening of RC beams with FRP plates", J. Compos. Construct., 3, 158-164. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:4(158).
  33. Said, H. and Wu, Z. (2008), "Evaluating and proposing models of predicting IC debonding failure", J. Compos. Construct., 12, 284-299. https://doi.org/10.1061/(ASCE)1090-0268(2008)12:3(284).
  34. Shakiba Z., Davood M., Nicholas F., Raimondo L. and Francesco F., (2023), "Experimental evaluation of FRP-concrete bond using externally-bonded reinforcement on grooves (EBROG) method", Compos. Struct., 310, 116693, https://doi.org/10.1016/j.compstruct.2023.116693.
  35. Spadea, G., Bencardino, F. and Swamy, R.N. (1998), "Structural behavior of composite RC beams with externally bonded CFRP", J. Compos. Construct., 2(3), 132-137. https://doi.org/10.1061/(ASCE)1090-0268(1998)2:3(132).
  36. Takeda, K., Mitsui, Y., Murakami, K., Sakai, H. and Nakamura, M. (1996), "Flexural behaviour of reinforced concrete beams strengthened with carbon fibre sheets", Compos. Part A Appl. Sci. Manufact., 27(10), 981-987. https://doi.org/10.1016/1359-835X(96)00059-0.
  37. Teng, J.G., Chen, J.F., Smith, S.T. and Lam, L. (2002), Frp-Strengthened RC Structures, Wiley, Chichester UK.
  38. Wang, Y., Li X., Li, J., Wang, Q., Xu, B. and Deng, J. (2019), "Debonding damage detection of the CFRP-concrete interface based on piezoelectric ceramics by the wave-based method", Construct. Build. Mater., 210, 514-524. https://doi.org/10.1016/j.conbuildmat.2019.03.042.
  39. Wang, Y., Li, J., Deng, J. and Li, S. (2018), "Bond behaviour of CFRP/steel strap joints exposed to overloading fatigue and wetting/drying cycles", Eng. Struct., 172(OCT.1), 1-12. https://doi.org/10.1016/j.engstruct.2018.05.112.
  40. Wu, Y.F., Van, J.H., Zhou, Y.W. and Xiao, V. (2010), "Ultimate strength of reinforced concrete beams retrofitted with hybrid bonded fiber-reinforced polymer", ACI Struct. J., 107, 451-460. https://doi.org/10.14359/51663818.
  41. Zhang, C., Wang, J. and Fridley, K.J. (2012), "Environment-assisted subcritical debonding of epoxy-concrete interface", J. Compos. Construct., 16, 563-571. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000291.
  42. Zhang, D., Shi, H., Ueda, T. and Jin, W. (2020), "Effect of U-shaped anchorages on concrete cover separation in carbon fiber-reinforced polymer-strengthened beams with notches at the sheet end", Struct. Concrete, 22(7). https://doi.org/10.1002/suco.201900388.
  43. Zhang, H.W., Smith, S.T. and Kim, S.J. (2012), "Optimisation of carbon and glass frp anchor design", Construct. Build. Mater., 32, 1-12. https://doi.org/10.1016/j.conbuildmat.2010.11.100.
  44. Zhou, C., Guo, Y., Wang, Y., He, X. and Xiong, Z. (2020), "Flexural behaviour of narrow RC beams strengthened with hybrid anchored CFRP sheets", J. Adv. Concrete Technol., 18(3), 54-66. https://doi.org/10.3151/jact.18.54.
  45. Zhou, C., Ren, D. and Cheng, X. (2017), "Shear-strengthening of RC continuous t-beams with spliced CFRP u-strips around bars against flange top", Struct. Eng. Mech., 64(1), 135-143. https://doi.org/10.12989/sem.2017.64.1.135.
  46. Zhou, C.Y., Yu, Y.N. and Xie, E.L. (2020), "Strengthening RC beams using externally bonded CFRP sheets with end self-locking", Compos. Struct., 241(1), 112070. https://doi.org/10.1016/j.compstruct.2020.112070.
  47. Zhou, C.Y., Zhou, A.L. and Zhou, X.T. (2012), "Device and method with parallel rods for anchoring flexible strip", patent for invention No. ZL2010105166838. China.
  48. Zhuo, J., Wang, F. and Li, T. (2009), "Application of FRP strap in an innovative prestressed method", J. Mater. Civil Eng., 21, 176-180. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:4(176).