DOI QR코드

DOI QR Code

Quadrilateral RAC filled FRP tubes: Compressive behavior, design and finite element models

  • Ming-Xiang Xiong (Earthquake Engineering Research & Test Center, Guangzhou University) ;
  • Xuchi Chen (Guangzhou Second Municipal Engineering Co., Ltd.) ;
  • Fengming Ren (School of Civil Engineering, Guangzhou University)
  • 투고 : 2022.12.01
  • 심사 : 2023.03.13
  • 발행 : 2023.09.10

초록

The need for carbon neutrality in the world strives the construction industry to reduce the use of construction materials. Aiming to this, recycled aggregate concrete (RAC) could be used as it reduces the carbon dioxide emissions. Currently, RAC is mainly used in non-structural members of civil constructions, seldom used in structural members. To broaden its structural use, a new type of composite column, i.e., the square and rectangular RAC filled FRP tubes (CFFTs), has been concerned in this study. The investigation on their axial compressive behavior through physical test and numerical analysis demonstrated that the load-carrying capacity of such column is reduced with the increase of replacement ratio of recycled aggregate and aspect ratio of section but can be improved by the increase of FRP confining stiffness and corner radius, said capacity can be equivalent to their steel reinforced concrete counterparts. At failure, the hoop strain at corner of tube is unexpectedly smaller than that at flat side of the tube although the FRP tube ruptured at its corner first, revealing a premature failure. Besides, a design-oriented stress-strain model of concrete and an analysis-oriented finite element model are proposed to predict the load-strain response of square and rectangular CFFT columns, which facilitates the engineering use of RAC in load-carrying structural members.

키워드

과제정보

The authors would like to acknowledge the financial support of the Natural Science Foundation of Guangdong Province under Grant No. 2023A1515011938; the National Natural Science Foundation of China under Grant Nos.: 51878189 and 52178125; and the Yangcheng Scholars Research Project of Guangzhou under Grant No: 202032849.

참고문헌

  1. Alelaimat, R.A., Neaz SheikhMuhammad, M. and Hadi, N.S. (2021), "Behaviour of square concrete filled FRP tube columns under concentric, uniaxial eccentric, biaxial eccentric and four-point bending loads", Thin-Wall. Struct., 168, 108252. https://doi.org/10.1016/j.tws.2021.108252.
  2. Ali, L., El Ouni, M.H., Raza1, A. and Kahla., N.B. (2021), "Investigation of FRP-reinforced recycled concrete compressive members: Experimental and theoretical analysis", Steel Compos. Struct., 41(1), 99-113. http://doi.org/10.12989./scs.2021.41.1.099.
  3. ASTM D3039 (2017), Standard Test Method for Tensile Properties of Ploymer Ma-trix Composite Materials, West Conshohocken. 
  4. Bru, K., Touze, S., Bourgeois, F., Lippiatt, N. and Menard Y. (2014), "Assessment of a microwave- assisted recycling process for the recovery of high-quality aggregates from concrete waste", Int. J. Mining Process, 126, 90-98. https://doi.org/10.1016/j.minpro.2013.11.009.
  5. C39/C39M (2018), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International; USA.
  6. Cai, J. and He, Z.Q. (2006), "Axial load behavior of square CFT stub column with binding bars", J. Construct. Steel Res., 62, 472-483. http://doi.org/10.1016/j.jcsr.2005.09.010.
  7. Chen, B.L. and Wang, L.G. (2019), "Experimental study on hollow steel-reinforced concrete-filled GFRP tubular members under axial compression", Steel Compos. Struct., 32(1), 59-66.
  8. Chen, G.M., He, Y.H., Yang, H., Chen, J.F. and Guo, Y.C. (2014), "Compressive behavior of steel fiber reinforced recycled aggregate concrete after exposure to elevated temperatures", Construct. Build. Mater., 71, 1-15. http://doi.org/10.1016/j.conbuildmat.2014.08.012.
  9. Chen, G.M., Lan, Z.H., Xiong, M.X. and Xu, Z. (2020), "Compressive behavior of FRP-confined steel-reinforced high strength concrete columns", Eng. Struct., 220, 110990. http://doi.org/10.1016/j.engstruct.2020.110990.
  10. Chen, G.M., Zhang, J.J., Wu, Y.F. and Lin, G. (2021), "Stress-strain behavior of FRP-confined recycled aggregate concrete in square columns of different size", J. Compos. Construct., 25(5), 04021040. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001150.
  11. Chen, G.M., Zhang J.J., Lin, G., Wu, Y.F. and Jiang, T. (2022), "Behavior of different-sized FRP-confined square compound concrete columns containing recycled concrete lumps", J. Compos. Construct., 26(2), 04022003. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001192.
  12. China Building Energy Consumption Annual Report 2020 (2021), Journal of BEE; 49(360), 1-6., Xia Men, China. https://doi.org/10.3969/j.issn.2096-9422.2021.02.001.
  13. Chin, C.L., Ma, C.K., Tan, J.Y., Ong, C.B., Awang, A.Z. and Omar, W. (2019), "Review on development of external steel-confined concrete", Construct. Build. Mater., 211, 919-931. http://doi.org/10.1016/j.conbuildmat.2019.03.295.
  14. Djerbi, A. (2018), "Effect of recycled coarse aggregate on the new interfacial transition zone concrete", Construct. Build. Mater., 190, 1023-1033. https://doi.org/10.1016/j.conbuildmat.2018.09.180
  15. Ferrotto, M.F., Fischer, O. and Cavaleri, L. (2018), "A strategy for the finite element modeling of FRP-confined concrete columns subjected to preload", Eng. Struct., 17, 1054-1067. http://doi.org/10.1016/j.engstruct.2018.07.047.
  16. GB 50010-2010 (2010), Code for Design Concrete Structures. China Architecture Publishing & Media Co.Ltd., China.
  17. GB 50608 (2020), Technical Standard for Fiber Reinforced Polymer (FRP) in Construction, China Planning Press, Beijing, China.
  18. Hany, N.F., Hantouche, E.G. and Harajli, M.H. (2016), "Finite element modeling of FRP-confined concrete using modified concrete damaged plasticity", Eng. Struct., 125, 1-14. http://doi.org/10.1016/j.engstruct.2016.06.047.
  19. JGJ55. (2011), Specification for Mix Proportion Design of Ordinary Concrete, China Architecture Publishing & Media Co. Ltd., China.
  20. Jiang, T. and Teng, J.G. (2007), "Analysis-oriented stress-strain models for FRP-confined concrete", Eng. Struct., 29(11), 2968-2986. http://doi.org/10.1016/j.engstruct.2007.01.010.
  21. Lee J., Lopez M.M. (2019), "Frictional bond-slip model for the concrete-FRP interface under the FRP U-wrap region", Construct. Build. Mater., 194, 226-237. https://doi.org/10.1016/j.conbuildmat.2018.11.018.
  22. Khan, Q.S., Neaz Sheikh, M. and Hadi, M.N.S. (2019), "Experimental and analytical investigations of CFFT columns with and without FRP bars under concentric compression", Steel Compos. Struct., 30(6), 591-601. https://doi.org/10.12989/scs.2019.30.6.591.
  23. Lam, L. and Teng, J.G. (2003), "Design-oriented stress-strain model for FRP-confined concrete in rectangular columns", J. Reinforced Plastics Compos., 22(13), 1149-1186. http://doi.org/10.1177/0731684403035429.
  24. Li, P.D., Yang, T.Q., Zeng, Q., Xing, F. and Zhou, Y.W. (2021), "Axial stress-strain behavior of carbon FRP-confined seawater sea-sand recycled aggregate concrete square columns with different corner radii", Compos. Struct., 262, 113589. https://doi.org/10.1016/j.compstruct.2021.113589.
  25. Li, Y.L., Zhao, X.L. and Singh Raman, R.K. (2020), "Behaviour of seawater and sea sand concrete filled FRP square hollow sections", Thin-Wall. Struct., 148, 106596. https://doi.org/10.1016/j.tws.2019.106596.
  26. Lin, H.W., Feng, P. and Yang, J.Q. (2021), "Pressure-dependent bond stress-slip model for sand-coated FRP-concrete interface", Compos. Struct., 263, 113719. http://doi.org/10.1016/j.compstruct.2021.113719.
  27. Moretti, Marina L. (2019), "Effectiveness of different confining configurations of FRP jackets for concrete columns", Struct. Eng. Mech., 72(2), 155-168. https://doi.org/10.12989/sem.2019.72.2.155.
  28. Narule, G.N. and Bambole, A.N. (2018), "Axial behavior of CFRP wrapped RC columns of different shapes with constant slenderness ratio", Struct. Eng. Mech., 65(6), 679-687. https://doi.org/10.12989/sem.2018.65.6.679.
  29. Ozbakkaloglu, T., Gholampou, A. and Xie, T. (2018), "Mechanical and durability properties of recycled aggregate concrete: Effect of recycled aggregate properties and content", J. Mater. Civil Eng., 30(2), 04017275. https://doi.org/10.1061/(asce)mt.1943-5533.0002142.
  30. Ozbakkaloglu, T., Lim, J.C. and Vincent, T. (2013), "FRP-confined concrete in circular sections: Review and assessment of stress-strain models", Eng. Struct., 49, 1068-1088. https://doi.org/10.1016/j.engstruct.2012.06.010.
  31. Teng, J.G., Jiang, T., Lam, L. and Luo, Y.Z. (2009), "Refinement of a design-oriented stress-strain model for FRP-confined concrete", J. Compos. Construct., 13(4), 269-278. http://doi.org/10.1061/(ASCE)CC.1943-5614.0000012.
  32. Touze, S., Bru, K., Menard, Y., Weh, A. and Von der Weid, F. (2017), "Electrical fragmentation applied to the recycling of concrete waste - effect on aggregate liberation", Int. J. Mineral Process., 158, 68-75. http://dx.doi.org/10.1016/j.minpro.2016.11.009.
  33. Xiong, M.X., Xu, Z., Chen, G.M. and Lan, Z.H. (2020), "FRP-confined steel-reinforced recycled aggregate concrete columns: Concept and behaviour under axial compression", Compos. Struct., 246, 112408. https://doi.org/10.1016/j.compstruct.2020.112408.
  34. Xie, T.Y. and Ozbakkaloglu, T. (2016), "Behavior of recycled aggregate concrete-filled basalt and carbon FRP tubes", Construct. Build. Mater., 105, 132-143. https://doi.org/10.1016/j.conbuildmat.2015.12.068.
  35. Xu, J.J., Chen, W.G., Demartino, C., Xie, T.Y., Yu, Y., Fang, C.F. and Xu, M. (2021), "A Bayesian model updating approach applied to mechanical properties of recycled aggregate concrete under uniaxial or triaxial compression", Construct. Build. Mater., 301, 124274. http://doi.org/10.1016/j.conbuildmat.2021.124274.
  36. Yu, T., Teng, J.G., Wong, Y.L. and Dong, S.L.(2010a), "Finite element modeling of confined concrete-I: Drucker-Prager type plasticity model", Engineering Structures, 32, 665-679. http://doi.org/10.1016/j.engstruct.2009.11.014.
  37. Yu, T., Teng, J.G., Wong, Y.L. and Dong, S.L. (2010b), "Finite element modeling of confined concrete-II: Plastic-damage model", Eng. Struct., 32, 680-691. http://doi.org/10.1016/j.engstruct.2009.11.013.
  38. Zhang, J.H., Ding L., Li, F. and Peng J.H. (2020), "Recycled aggregates from construction and demolition wastes as alternative filling materials for highway subgrades in China", J. Cleaner Product., 255, 120223. https://doi.org/10.1016/j.jclepro.2020.120223.