DOI QR코드

DOI QR Code

Geometric influence of anterior cerebral artery rotation on the formation of anterior communicating artery aneurysm

  • Sokhoeun Heng (Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine) ;
  • Sung Ho Lee (Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine) ;
  • Jin Woo Bae (Department of Neurosurgery, Inha University School of Medicine) ;
  • Young Hoon Choi (Department of Neurosurgery, Seoul Metropolitan Government-Seoul National University Boramae Medical Center) ;
  • Dong Hyun Yoo (Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine) ;
  • Kang Min Kim (Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine) ;
  • Won-Sang Cho (Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine) ;
  • Hyun-Seung Kang (Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine) ;
  • Jeong Eun Kim (Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine)
  • Received : 2022.11.15
  • Accepted : 2023.01.21
  • Published : 2023.09.30

Abstract

Objective: Several particular morphological factors that contribute to the hemodynamics of the anterior communicating artery (ACoA) have been documented, but no study has investigated the role of the degree of anterior cerebral artery (ACA) rotation on the presence of ACoA aneurysms (ACoAAs). Methods: A retrospective study of an institutional aneurysm database was performed; patients with ruptured or nonruptured ACoAAs were selected. Two sex- and age-matched control groups were identified: control Group A (nonaneurysms) and control Group B (middle cerebral artery aneurysms). Measurements of ACA rotation degree were obtained by using a three-dimensional imaging tool. Results: From 2015 to 2020, 315 patients were identified: 105 in the ACoAA group, 105 in control Group A, and 105 in control Group B. The average age at the time of presentation was 64 years, and 52.4% were female. The ACA rotation degree of the ACoAA group was significantly higher than that of control Group A (p <0.01). The A1 ratio and the A1A2 ratio of the ACoAA group were greater than those of control Group A (p <0.01 and p <0.01, respectively). The ACA rotation degree correlated insignificantly with aneurysm size in ACoAA patients (p=0.78). The ACA rotation degree in the ACoAA group was also insignificantly different from that in control B (p=0.11). Conclusions: The degree of ACA rotation was greater in the ACoAA group than in the nonaneurysm group, and it may serve as an imaging marker for ACoAA.

Keywords

Acknowledgement

This work was supported by grant No. (032021014) from the SNUH Research Fund.

References

  1. Ahn S, Shin D, Tateshima S, Tanishita K, Vinuela F, Sinha S. Fluid-induced wall shear stress in anthropomorphic brain aneurysm models: MR phase-contrast study at 3 T. J Magn Reson Imaging. 2007 Jun;25(6):1120-30. https://doi.org/10.1002/jmri.20928
  2. Baharoglu MI, Lauric A, Safain MG, Hippelheuser J, Wu C, Malek AM. Widening and high inclination of the middle cerebral artery bifurcation are associated with presence of aneurysms. Stroke. 2014 Sep;45(9):2649-55. https://doi.org/10.1161/STROKEAHA.114.005393
  3. Baharoglu MI, Schirmer CM, Hoit DA, Gao BL, Malek AM. Aneurysm inflow-angle as a discriminant for rupture in sidewall cerebral aneurysms: morphometric and computational fluid dynamic analysis. Stroke. 2010 Jul;41(7):1423-30. https://doi.org/10.1161/STROKEAHA.109.570770
  4. Brisman JL, Song JK, Newell DW. Cerebral aneurysms. N Engl J Med. 2006 Aug 31;355(9):928-39. https://doi.org/10.1056/NEJMra052760
  5. Cai W, Hu C, Gong J, Lan Q. Anterior communicating artery aneurysm morphology and the risk of rupture. World Neurosurg. 2018 Jan;109:119-26. https://doi.org/10.1016/j.wneu.2017.09.118
  6. Castro M, Putman CM, Sheridan MJ, Cebral JR. Hemodynamic patterns of anterior communicating artery aneurysms: a possible association with rupture. AJNR Am J Neuroradiol. 2009 Feb;30(2):297-302. https://doi.org/10.3174/ajnr.A1323
  7. Charbel FT, Seyfried D, Mehta B, Dujovny M, Ausman JI. Dominant Al: angiographic and clinical correlations with anterior communicating artery aneurysms. Neurol Res. 1991 Dec;13(4):253-6. https://doi.org/10.1080/01616412.1991.11740001
  8. Dehdashti AR, Chiluwal AK, Regli L. The implication of anterior communicating complex rotation and 3-dimensional computerized tomography angiography findings in surgical approach to anterior communicating artery aneurysms. World Neurosurg. 2016 Jul;91:34-42. https://doi.org/10.1016/j.wneu.2016.03.051
  9. Dhar S, Tremmel M, Mocco J, Kim M, Yamamoto J, Siddiqui AH, et al. Morphology parameters for intracranial aneurysm rupture risk assessment. Neurosurgery. 2008 Aug;63(2):185-96; discussion 196-7. https://doi.org/10.1227/01.NEU.0000316847.64140.81
  10. Dupont SA, Wijdicks EFM, Lanzino G, Rabinstein AA. Aneurysmal subarachnoid hemorrhage: an overview for the practicing neurologist. Semin Neurol. 2010 Nov;30(5):545-54. https://doi.org/10.1055/s-0030-1268862
  11. Flores BC, Scott WW, Eddleman CS, Batjer HH, Rickert KL. The A1-A2 diameter ratio may influence formation and rupture potential of anterior communicating artery aneurysms. Neurosurgery. 2013 Nov;73(5):845-53; discussion 852-3. https://doi.org/10.1227/NEU.0000000000000125
  12. Gonzalez-Darder JM. ACoA angle measured by computed tomographic angiography and its relevance in the pterional approach for ACoA aneurysms. Neurol Res. 2002 Apr;24(3):291-5. https://doi.org/10.1179/016164102101199765
  13. Greving JP, Wermer MJH, Brown RD Jr, Morita A, Juvela S, Yonekura M, et al. Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies. Lancet Neurol. 2014 Jan;13(1):59-66. https://doi.org/10.1016/S1474-4422(13)70263-1
  14. Hashimoto N, Handa H, Hazama F. Experimentally induced cerebral aneurysms in rats. Surg Neurol. 1978 Jul;10(1):3-8.
  15. Idil Soylu A, Ozturk M, Akan H. Can vessel diameters, diameter ratios, and vessel angles predict the development of anterior communicating artery aneurysms: a morphological analysis. J Clin Neurosci. 2019 Oct;68:250-5. https://doi.org/10.1016/j.jocn.2019.07.024
  16. Inagawa T. Site of ruptured intracranial saccular aneurysms in patients in Izumo City, Japan. Cerebrovasc Dis. 2010;30(1):72-84. https://doi.org/10.1159/000314623
  17. Jou LD, Lee DH, Morsi H, Mawad ME. Wall shear stress on ruptured and unruptured intracranial aneurysms at the internal carotid artery. AJNR Am J Neuroradiol. 2008 Oct; 29(9):1761-7. https://doi.org/10.3174/ajnr.A1180
  18. Kwak R, Niizuma H, Suzuki J. Hemodynamics in the anterior part of the circle of Willis in patients with intracranial aneurysms: a study of cerebral angiography. Tohoku J Exp Med. 1980 Sep;132(1):69-73. https://doi.org/10.1620/tjem.132.69
  19. Kwak R, Ohi T, Niizuma H, Suzuki J. Afferent artery and the site of neck of anterior communicating aneurysms. Surg Neurol. 1980 Mar;13(3):221-3.
  20. Lin N, Ho A, Gross BA, Pieper S, Frerichs KU, Day AL, et al. Differences in simple morphological variables in ruptured and unruptured middle cerebral artery aneurysms. J Neurosurg. 2012 Nov;117(5):913-9. https://doi.org/10.3171/2012.7.JNS111766
  21. Meng H, Tutino VM, Xiang J, Siddiqui A. High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis. AJNR Am J Neuroradiol. 2014 Jul;35(7):1254-62. https://doi.org/10.3174/ajnr.A3558
  22. Mhurchu CN, Anderson C, Jamrozik K, Hankey G, Dunbabin D, Group ACRoSHS. Hormonal factors and risk of aneurysmal subarachnoid hemorrhage: an international population-based, case-control study. Stroke. 2001 Mar;32(3):606-12. https://doi.org/10.1161/01.STR.32.3.606
  23. Perlmutter D, Rhoton AL Jr. Microsurgical anatomy of the anterior cerebral-anterior communicating-recurrent artery complex. J Neurosurg. 1976 Sep;45(3):259-72. https://doi.org/10.3171/jns.1976.45.3.0259
  24. Schievink WI. Intracranial aneurysms. N Engl J Med. 1997 Jan;336(1):28-40. https://doi.org/10.1056/NEJM199701023360106
  25. Shimogonya Y, Ishikawa T, Imai Y, Matsuki N, Yamaguchi T. Can temporal fluctuation in spatial wall shear stress gradient initiate a cerebral aneurysm? A proposed novel hemodynamic index, the gradient oscillatory number (GON). J Biomech. 2009 Mar;42(4):550-4. https://doi.org/10.1016/j.jbiomech.2008.10.006
  26. Stehbens WE. Aneurysms and anatomical variation of cerebral arteries. Arch Pathol. 1963 Jan;75:45-64.
  27. Ujiie H, Tachibana H, Hiramatsu O, Hazel AL, Matsumoto T, Ogasawara Y, et al. Effects of size and shape (aspect ratio) on the hemodynamics of saccular aneurysms: a possible index for surgical treatment of intracranial aneurysms. Neurosurgery. 1999 Jul;45(1):119-29; discussion 129-30. https://doi.org/10.1097/00006123-199907000-00028
  28. Wiebers DO, Whisnant JP, Huston J 3rd, Meissner I, Brown RD Jr, Piepgras DG, et al. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet. 2003 Jul;362(9378):103-10. https://doi.org/10.1016/S0140-6736(03)13860-3
  29. Wu TC, Chen TY, Ko CC, Chen JH, Lin CP. Correlation of internal carotid artery diameter and carotid flow with asymmetry of the circle of Willis. BMC Neurol. 2020 Jun;20(1):251.
  30. Yasargil M. Microneurosurgery (Volume 1). New York: Thieme Stratton Inc. 1984, p. 15-217.
  31. Zacharia BE, Hickman ZL, Grobelny BT, DeRosa P, Kotchetkov I, Ducruet AF, et al. Epidemiology of aneurysmal subarachnoid hemorrhage. Neurosurg Clin N Am. 2010 Apr;21(2):221-33. https://doi.org/10.1016/j.nec.2009.10.002