DOI QR코드

DOI QR Code

Stability analysis of integrated SWCNT reposed on Kerr medium under longitudinal magnetic field effect Via an NL-FSDT

  • Belkacem Selmoune (Department of Physics, University of Relizane) ;
  • Abdelwahed Semmah (Department of Physics, University of Relizane) ;
  • Mohammed L. Bouchareb (Multiscale Modeling and Simulation Laboratory, Department of Physics, Faculty of Exact Sciences, Department of Physics, University of Sidi Bel Abbes) ;
  • Fouad Bourada (Material and Hydrology Laboratory, Civil Engineering Department, Faculty of Technology, University of Sidi Bel Abbes) ;
  • Abdelouahed Tounsi (Material and Hydrology Laboratory, Civil Engineering Department, Faculty of Technology, University of Sidi Bel Abbes) ;
  • Mohammed A. Al-Osta (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals)
  • 투고 : 2022.12.29
  • 심사 : 2023.05.08
  • 발행 : 2023.09.25

초록

This study aims to analyze the mechanical buckling behavior of a single-walled carbon nanotube (SWCNT) integrated with a one-parameter elastic medium and modeled as a Kerr-type foundation under a longitudinal magnetic field. The structure is considered homogeneous and therefore modeled utilizing the nonlocal first shear deformation theory (NL-FSDT). This model targets thin and thick structures and considers the effect of the transverse shear deformation and small-scale effect. The Kerr model describes the elastic matrix, which takes into account the transverse shear strain and normal pressure. Using the nonlocal elastic theory and taking into account the Lorentz magnetic force acquired from Maxwell relations, the stability equation for buckling analysis of a simply supported SWCNT under a longitudinal magnetic field is obtained. Moreover, the mechanical buckling load behavior with respect to the impacts of the magnetic field and the elastic medium parameters considering the nonlocal parameter, the rotary inertia, and transverse shear deformation was examined and discussed. This study showed useful results that can be used for the design of nano-transistors that use the buckling properties of single-wall carbon nanotubes(CNTs) due to the creation of the magnetic field effect.

키워드

참고문헌

  1. Abouelregal, A.E., Mohammad-Sedighi, H., Faghidian, S.A. and Shirazi, A.H. (2021), "Temperature-dependent physical characteristics of the rotating nonlocal nanobeams subject to a varying heat source and a dynamic load", Facta Universitatis, Ser.: Mech. Eng., 19(4), 633-656. https://doi.org/10.22190/FUME201222024A. 
  2. Abouelregal, A.E., Mohammad-Sedighi, H., Shirazi, A.H., Malikan, M. and Eremeyev, V.A. (2022), "Computational analysis of an infinite magneto-thermoelastic solid periodically dispersed with varying heat flow based on non-local Moore-Gibson-Thompson approach", Contin. Mech. Thermodyn., 34(4), 1067-1085. https://doi.org/10.1007/s00161-021-00998-1. 
  3. Ahmad Pour, M., Golmakani, M.E. and Malikan, M. (2021), "Thermal buckling analysis of circular bilayer graphene sheets resting on an elastic matrix based on nonlocal continuum mechanics", J. Appl. Comput. Mech., 7(4), 1862-1877. https://doi.org/10.22055/JACM.2019.31299.1859. 
  4. Ahmed, R.A., Fenjan, R.M., Hamad, L.B. and Faleh, N.M. (2020), "A review of effects of partial dynamic loading on dynamic response of nonlocal functionally graded material beams", Adv. Mater. Res., 9(1), 33-48. https://doi.org/10.12989/amr.2020.9.1.033. 
  5. Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175. 
  6. Akbas, S.D. (2022), "Moving-load dynamic analysis of AFG beams under thermal effect", Steel Compos. Struct., 42(5), 649-655. https://doi.org/10.12989/scs.2022.42.5.649. 
  7. Alimoradzadeh, M. and Akbas, S.D. (2022), "Nonlinear dynamic behavior of functionally graded beams resting on nonlinear viscoelastic foundation under moving mass in thermal environment", Struct. Eng. Mech., 81(6), 705-714. https://doi.org/10.12989/sem.2022.81.6.705. 
  8. Avcar, M, (2016), "Effects of material non-homogeneity and two parameter elastic foundation on fundamental frequency parameters of Timoshenko beams", Acta Physica Polonica A, 130(1), 375-379. https://doi.org/10.12693/APhysPolA.130.375. 
  9. Avcar, M. and Mohammed, W.K.M. (2018), "Free vibration of functionally graded beams resting on Winkler-Pasternak foundation", Arab. J. Geosci., 11(232), 232. https://doi.org/10.1007/s12517-018-3579-2. 
  10. Azandariani, M.G., Gholami, M. and Nikzad, A. (2022), "Eringen's nonlocal theory for non-linear bending analysis of BGF Timoshenko nanobeams", Adv. Nano Res., 12(1), 37-47. https://doi.org/10.12989/anr.2022.12.1.037. 
  11. Benferhat, R., Hassaine Daouadji, T. and Rebahi, A. (2020), "Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation", Couple. Syst. Mech., 9(6), 499-519. https://doi.org/10.12989/csm.2020.9.6.499. 
  12. Bensattalah, T., Bouakkaz, K., Zidour, M. and Daouadji, T.H. (2018), "Critical buckling loads of carbon nanotube embedded in Kerr's medium", Adv. Nano Res., 6(4), 339‑356. https://doi.org/10.12989/anr.2018.6.4.339. 
  13. Bensattalah, T., Zidour, M. and Daouadji, T.H. (2019), "A new nonlocal beam model for free vibration analysis of chiral single-walled carbon nanotubes", Compos. Mater. Eng, 1(1), 21-31. https://doi.org/10.12989/cme.2019.1.1.021. 
  14. Bochkareva, S.A. and Lekomtsev, S.V. (2022), "Natural vibrations and hydroelastic stability of laminated composite circular cylindrical shells", Struct. Eng. Mech., 81(6), 769-780. https://doi.org/10.12989/sem.2022.81.6.769. 
  15. Bouhadra, A., Menasria, A. and Rachedi, M.A. (2021), "Boundary conditions effect for buckling analysis of porous functionally graded nanobeam", Adv. Nano Res., 10(4), 313-325. https://doi.org/10.12989/anr.2021.10.4.313. 
  16. Chinnapandi, L.B.M., Pitchaimani, J. and Eltaher, M.A. (2022), "Vibro-acoustics of functionally graded porous beams subjected to thermo-mechanical loads", Steel Compos. Struct., 44(6), 829-843. https://doi.org/10.12989/scs.2022.44.6.829. 
  17. Cho, J.R. (2022a), "Thermal buckling analysis of metal-ceramic functionally graded plates by natural element method", Struct. Eng. Mech., 84(6), 723-731. https://doi.org/10.12989/sem.2022.84.6.723. 
  18. Cho, J.R. (2022b), "Nonlinear bending analysis of functionally graded CNT-reinforced composite plates", Steel Compos. Struct., 42(1), 23-32. https://doi.org/10.12989/scs.2022.42.1.023. 
  19. Choi, S.H., Heo, I., Kim, J.H., Jeong, H., Lee, J.Y. and Kim, K.S. (2022), "Flexural behavior of post-tensioned precast concrete girder at negative moment region", Comput. Concrete, 30(1), 75-84. https://doi.org/10.12989/cac.2022.30.1.075. 
  20. Civalek, O. and Avcar, M. (2022), "Free vibration and buckling analyses of CNT reinforced laminated nonrectangular plates by discrete singular convolution method", Eng. Comput., 38, 489-521. https://doi.org/10.1007/s00366-020-01168-8. 
  21. Cuong-Le, T., Ferreira, A.J.M. and Abdel Wahab, M. (2019b), "A refined size-dependent couple stress theory for laminated composite micro-plates using isogeometric analysis", Thin Wall. Struct., 145, 106427. https://doi.org/10.1016/j.tws.2019.106427. 
  22. Cuong-Le, T., Nguyen, K.D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H. and Abdel-Wahab, M. (2020a), "A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA", Compos. Struct., 259, 113216. https://doi.org/10.1016/j.compstruct.2020.113216. 
  23. Cuong-Le, T., Nguyen, K.D., Hoang-Le, M., Sang-To, T., Phan-Vu, P. and Abdel Wahab, M. (2022a), "Nonlocal strain gradient IGA numerical solution for static bending, free vibration and buckling of sigmoid FG sandwich nanoplate", Physica B: Condens. Matter, 631, 413726. https://doi.org/10.1016/j.physb.2022.413726. 
  24. Cuong-Le, T., Nguyen, K.D., Lee, J., Rabczuk, T. and Nguyen-Xuan, H. (2022b), "A 3D nano scale IGA for free vibration and buckling analyses of multi-directional FGM nanoshells", Nanotechnol., 33(6), 065703. https://doi.org/10.1088/1361-6528/ac32f9. 
  25. Cuong-Le, T., Nguyen, T.N., Vu, T.H., Khatir, S. and Abdel Wahab, M. (2020b), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. Comput., 38, 449-460. https://doi.org/10.1007/s00366-020-01154-0. 
  26. Cuong-Le, T., Tran, L.V., Vu-Huu, T. and Abdel-Wahab, M. (2019a), "The size-dependent thermal bending and buckling analyses of composite laminate microplate based on new modified couple stress theory and isogeometric analysis", Comput. Meth. Appl. Mech. Eng., 350, 337-361. https://doi.org/10.1016/j.cma.2019.02.028. 
  27. Demir, C., Mercan, K., Numanoglu, H.M. and Civalek, O. (2018), "Bending response of nanobeams resting on elastic foundation", J. Appl. Comput. Mech., 4(2), 105-114. https://doi.org/10.22055/JACM.2017.22594.1137. 
  28. Demir, C. and Civalek, O. (2013), "Torsional and longitudinal frequency and wave response of microtubules based on the nonlocal continuum and nonlocal discrete models", Appl. Math. Model., 37(22), 9355-9367. https://doi.org/10.1016/j.apm.2013.04.050. 
  29. Ding, F., Ding, H., He, C., Wang, L. and Lyu, F. (2022), "Method for flexural stiffness of steel-concrete composite beams based on stiffness combination coefficients", Comput. Concrete, 29(3), 127-144. https://doi.org/10.12989/cac.2022.29.3.127. 
  30. Du, M., Liu, J., Ye, W., Yang, F. and Lin, G. (2022), "A new semi-analytical approach for bending, buckling and free vibration analyses of power law functionally graded beams", Struct. Eng. Mech., 81(2), 179-194. https://doi.org/10.12989/sem.2022.81.2.179. 
  31. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5. 
  32. Fan, L., Kong, D., Song, J., Moradi, Z., Safa, M. and Khadimallah, M.A. (2022), "Optimization dynamic responses of laminated multiphase shell in thermo-electro-mechanical conditions", Adv. Nano Res., 13(1), 29-45. https://doi.org/10.12989/anr.2022.13.1.029. 
  33. Gia Phi, B., Van Hieu, D., Sedighi, H.M. and Sofiyev, A.H. (2022), "Size-dependent nonlinear vibration of functionally graded composite micro-beams reinforced by carbon nanotubes with piezoelectric layers in thermal environments", Acta Mechanica, 233(6), 2249-2270. https://doi.org/10.1007/s00707-022-03224-4. 
  34. Grujicic, M., Cao, G. and Roy, W.N. (2005), "Computational analysis of the lattice contribution to thermal conductivity of single-walled carbon nanotubes", J. Mater. Sci., 40(8), 1943‑1952. https://doi.org/10.1007/s10853-005-1215-5. 
  35. Hadji, L. and Bernard, F. (2020), "Bending and free vibration analysis of functionally graded beams on elastic foundations with analytical validation", Adv. Mater. Res., 9(1), 63-98. https://doi.org/10.12989/amr.2020.9.1.063. 
  36. Hadji, L., Zouatnia, N. and Bernard, F. (2019), "An analytical solution for bending and free vibration responses of functionally graded beams with porosities: Effect of the micromechanical models", Struct. Eng. Mech., 69(2), 231-241. https://doi.org/10.12989/sem.2019.69.2.231. 
  37. Hagos, R.W., Choi, G., Sung, H. and Chang, S. (2022), "Substructuring-based dynamic reduction method for vibration analysis of periodic composite structures", Compos. Mater. Eng., 4(1), 43-62 https://doi.org/10.12989/cme.2022.4.1.043. 
  38. Hosseini, S.A., Khosravi, F. and Ghadiri, M. (2020), "Effect of external moving torque on dynamic stability of carbon nanotube", J. Nano Res., 61, 118-135. https://doi.org/10.4028/www.scientific.net/JNanoR.61.118. 
  39. Huang, X., Shan, H., Chu, W. and Chen, Y. (2022), "Computational and mathematical simulation for the size-dependent dynamic behavior of the high-order FG nanotubes, including the porosity under the thermal effects", Adv. Nano Res., 12(1), 101-115. https://doi.org/10.12989/anr.2022.12.1.101. 
  40. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nat., 354(6348), 56‑58. https://doi.org/10.1038/354056a0. 
  41. Iijima, S., Brabec, C., Maiti, A. and Bernholc, J. (1996), "Structural flexibility of carbon nanotubes", J. Chem. Phys., 104(5), 2089-2092. https://doi.org/10.1063/1.470966. 
  42. Jena, S.K., Chakraverty, S., Malikan, M. and Tornabene, F. (2021), "TornabeneStability analysis of single-walled carbon nanotubes embedded in winkler foundation placed in a thermal environment considering the surface effect using a new refined beam theory", Mech. Bas. Des. Struct. Mach., 49(4), 581-595. https://doi.org/10.1080/15397734.2019.1698437. 
  43. Jena, S.K., Chakraverty, S. and Malikan, M. (2020), "Vibration and buckling characteristics of nonlocal beam placed in a magnetic field embedded in Winkler-Pasternak elastic foundation using a new refined beam theory: an analytical approach", Eur. Phys. J. Plus, 135(2), 1-18. https://doi.org/10.1140/epjp/s13360-020-00176-3. 
  44. Kempa, K., Rybczynski, J., Huang, Z., Gregorczyk, K., Vidan, A., Kimball, B., Carlson, J., Benham, G., Wang, Y., Herczynski, A. and Ren, Z. (2007), "Carbon nanotubes as optical antennae", Adv. Mater., 19(3), 421‑426. https://doi.org/10.1002/adma.200601187. 
  45. Kerr, A.D. (1965), "A study of a new foundation model", Acta Mechanica, 1(2) 135‑147. https://doi.org/10.1007/BF01174308. 
  46. Khatir, S., Tiachacht, S., Cuong-Le, T, Quoc Bui, T. and Abdel Wahab, M. (2019), "Damage assessment in composite laminates using ANN-PSO-IGA and Cornwell indicator.", Compos. Struct., 230, 111509. https://doi.org/10.1016/j.compstruct.2019.111509. 
  47. Khatir, S., Tiachacht, S., Cuong-Le, T., Ghandourah, E., Mirjalili, S. and Abdel Wahab, M. (2021), "An improved Artificial Neural Network using Arithmetic Optimization Algorithm for damage assessment in FGM composite plates", Compos. Struct., 273, 114287. https://doi.org/10.1016/j.compstruct.2021.114. 
  48. Koochi, A. and, Goharimanesh, M, (2021), "Nonlinear oscillations of CNT nano-resonator based on nonlocal elasticity: The energy balance method", Report. Mech. Eng., 2(1), 41-50. https://doi.org/10.31181/rme200102041g. 
  49. Kumar, H.S.N. and Kattimani, S. (2022), "Nonlinear analysis of two-directional functionally graded doubly curved panels with porosities", Struct. Eng. Mech., 82(4), 477-490. https://doi.org/10.12989/sem.2022.82.4.477. 
  50. Lata, P. and Singh, S. (2022), "Effect of rotation and inclined load in a nonlocal magneto-thermoelastic solid with two temperature", Adv. Mater. Res., 11(1), 23-39. https://doi.org/10.12989/amr.2022.11.1.023. 
  51. Liu, Y., Wang, X., Liu, L., Wu, B. and Yang, Q. (2022), "On the forced vibration of high-order functionally graded nanotubes under the rotation via intelligent modelling", Adv. Nano Res., 13(1), 47-61. https://doi.org/10.12989/anr.2022.13.1.047. 
  52. Ma, R.Z., Wu, J., Wei, B.Q., Liang, J. and Wu, D.H. (1998), "Processing and properties of carbon nanotubes-nano-SiC ceramic", J. Mater. Sci., 33(21), 5243‑5246. https://doi.org/10.1023/A:1004492106337. 
  53. Malikan, M. and Eremeyev, V.A. (2020b), "Post-critical buckling of truncated conical carbon nanotubes considering surface effects embedding in a nonlinear Winkler substrate using the Rayleigh-Ritz method", Mater. Res. Expr., 7, 025005. https://doi.org/10.1088/2053-1591/ab691c. 
  54. Malikan, M. (2019b), "On the buckling response of axially pressurized nanotubes based on a novel nonlocal beam theory", J. Appl. Comput. Mech., 5(1), 103-112. https://doi.org/10.22055/JACM.2018.25507.1274. 
  55. Malikan, M. (2020b), "On the plastic buckling of curved carbon nanotubes", Theor. Appl. Mech. Lett., 10, 46-56. https://doi.org/10.1016/j.taml.2020.01.004. 
  56. Malikan, M. (2017), "Electro-mechanical shear buckling of piezoelectric nanoplate using modified couple stress theory based on simplified first order shear deformation theory", Appl. Math. Model., 48, 196-207. https://doi.org/10.1016/j.apm.2017.03.065. 
  57. Malikan, M. and Dastjerdi, S. (2018b), "Analytical buckling of FG nanobeams on the basis of a new one variable first-order shear deformation beam theory", Int. J. Eng. Appl. Sci., 10(1), 21-34. http://doi.org/10.24107/ijeas.420838. 
  58. Malikan, M., Dimitri, R. and Tornabene, F. (2019a), "Transient response of oscillated carbon nanotubes with an internal and external damping", Compos. Part B: Eng., 158, 198-205. https://doi.org/10.1016/j.compositesb.2018.09.092. 
  59. Malikan, M., Eremeyev, V.A. and Sedighi, H.M. (2020a), "Buckling analysis of a non-concentric double-walled carbon nanotube", Acta Mechanica, 231, 5007-5020. https://doi.org/10.1007/s00707-020-02784-7. 
  60. Malikan, M., Van Bac, N. and Tornabene, F. (2018a), "Damped forced vibration analysis of single-walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory", Eng. Sci. Technol., 21, 778-786. https://doi.org/10.1016/j.jestch.2018.06.001. 
  61. Malikan, M., Van Bac, N., Dimitri, R. and Tornabene, F. (2019c), "Dynamic modeling of non-cylindrical curved viscoelastic single-walled carbon nanotubes based on the second gradient theory", Mater. Res. Expr., 6(1), 075041. https://doi.org/10.1088/2053-1591/ab15ff. 
  62. Man, Y. (2022), "On the dynamic stability of a composite beam via modified high-order theory", Comput. Concrete, 30(2), 151-164. https://doi.org/10.12989/cac.2022.30.2.151. 
  63. Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181-190. https://doi.org/10.12989/anr.2019.7.3.181. 
  64. Meyyappan, M. (2004), Carbon Nanotubes: Science and Applications, CRC Press.
  65. Mikhasev, G., Radi, E. and Misnik, V. (2022), "Pull-in instability analysis of a nanocantilever based on the two-phase nonlocal theory of elasticity", J. Appl. Comput. Mech., 8(4), 1456-1466. https://doi.org/10.22055/jacm.2022.40638.3619. 
  66. Mula, S.N., Leite, A.M.S. and Loja, M.A.R. (2022), "Analytical and numerical study of failure in composite plates", Compos. Mater. Eng., 4(1), 23-41. https://doi.org/10.12989/cme.2022.4.1.023. 
  67. Narendar, S., Gupta, S.S. and Gopalakrishnan, S. (2012), "Wave propagation in single-walled carbon nanotube under longitudinal magnetic field using nonlocal Euler-Bernoulli beam theory", Appl. Math. Model., 36(9), 4529‑4538. https://doi.org/10.1016/j.apm.2011.11.073. 
  68. Pasternak, P.L. (1954), "On a new method of analysis of an elastic foundation by means of two constants", Gos. Izd. Lit. po Strait i Arkh. 
  69. Polat, A. and Kaya, Y. (2022), "Analysis of discontinuous contact problem in two functionally graded layers resting on a rigid plane by using finite element method", Comput. Concrete, 29(4), 247-253. https://doi.org/10.12989/cac.2022.29.4.247. 
  70. Postma, H.W.C., Teepen, T., Yao, Z., Grifoni, M. and Dekker, C. (2001), "Carbon nanotube single-electron transistors at room temperature", Sci., 293(5527), 76‑79. https://doi.org/10.1126/science.1061797. 
  71. Pradhan, S.C. and Reddy, G.K. (2011), "Buckling analysis of single walled carbon nanotube on Winkler foundation using nonlocal elasticity theory and DTM", Comput. Mater. Sci., 50(3), 1052‑1056. https://doi.org/10.1016/j.commatsci.2010.11.001. 
  72. Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bachir Bouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065. 
  73. Rezaiee-Pajand, M., Sobhani, E. and Masoodi, A.R. (2022), "Vibrational behavior of exponentially graded joined conical-conical shells", Steel Compos. Struct., 43(5), 603-623. https://doi.org/10.12989/scs.2022.43.5.603. 
  74. Salamat, D. and Sedighi, H.M. (2017), "The effect of small scale on the vibrational behavior of single-walled carbon nanotubes with a moving nanoparticle", J. Appl. Comput. Mech., 3(3), 208-217. https://doi.org/10.22055/JACM.2017.12740. 
  75. Sanchez-Portal, D., Artacho, E., Soler, J.M., Rubio, A. and Ordejon, P. (1999), "Ab initiostructural, elastic, and vibrational properties of carbon nanotubes", Phys. Rev. B, 59(19) 12678-12688. https://doi.org/10.1103/PhysRevB.59.12678. 
  76. Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134‑149. https://doi.org/10.1016/j.ast.2017.11.004. 
  77. Shanab, R.A., Attia, M.A., Mohamed, S.A. and Mohamed, N.A. (2020), "Effect of microstructure and surface energy on the static and dynamic characteristics of FG Timoshenko nanobeam embedded in an elastic medium", J. Nano Res., 61, 97-117. https://doi.org/10.4028/www.scientific.net/JNanoR.61.97. 
  78. Shariati, M., Shishesaz, M., Mosalmani, R. and Roknizadeh, S.A. (2022), "Size effect on the axisymmetric vibrational response of functionally graded circular nano-plate based on the nonlocal stress-driven method", J. Appl. Comput. Mech., 8(3), 962-980. https://doi.org/10.22055/jacm.2021.38131.3159. 
  79. She, G.L., Ren, Y.R., Xiao, W.S. and Liu, H. (2018), "Study on thermal buckling and post-buckling behaviors of FGM tubes resting on elastic foundations", Struct. Eng. Mech., 66(6), 729‑736. https://doi.org/10.12989/sem.2018.66.6.729. 
  80. Sudak, L.J. (2003), "Column buckling of multiwalled carbon nanotubes using nonlocal continuum mechanics", J. Appl. Phys., 94(11), 7281-7287. https://doi.org/10.1063/1.1625437. 
  81. Timesli, A. (2020b), "Buckling analysis of double walled carbon nanotubes embedded in Kerr elastic medium under axial compression using the nonlocal Donnell shell theory", Adv. Nano Res., 9(2), 69‑82. https://doi.org/10.12989/anr.2020.9.2.069. 
  82. Timesli, A. (2020a), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete, 26(1), 53-62. https://doi.org/10.12989/cac.2020.26.1.053. 
  83. Timesli, A. (2022), "Buckling behavior of SWCNTs and MWCNTs resting on elastic foundations using an optimization technique", Phys. Mesomech., 25, 129-141. https://doi.org/10.1134/S1029959922020047. 
  84. Tran, T.M. and Cuong-Le, T. (2022), "A nonlocal IGA numerical solution for free vibration and buckling analysis of Porous Sigmoid Functionally Graded (P-SFGM) nanoplate", Int. J. Struct. Stab. Dyn., 22(16), 2250193. https://doi.org/10.1142/S0219455422501930. 
  85. Tsukagoshi, K., Yoneya, N., Uryu, S., Aoyagi, Y., Kanda, A., Ootuka, Y. and Alphenaar, B.W. (2002), "Carbon nanotube devices for nanoelectronics", Physica B: Condens. Matter, 323(1-4), 107‑114. https://doi.org/10.1016/S0921-4526(02)00993-6. 
  86. Van Cauwelaert, F., Stet, M. and Jasienski, A. (2002), "The general solution for a slab subjected to centre and edge loads and resting on a kerr foundation", Int. J. Pavem. Eng., 3(1), 1‑18. https://doi.org/10.1080/10298430290029894. 
  87. Wang, C.M., Zhang, Y.Y., Ramesh, S.S. and Kitipornchai, S. (2006), "Buckling analysis of micro- and nanorods/tubes based on nonlocal Timoshenko beam theory", J. Phys. D: Appl. Phys., 39(17), 3904‑3909. https://doi.org/10.1088/0022-3727/39/17/029. 
  88. Wang, H., Dong, K., Men, F., Yan, Y.J. and Wang, X. (2010), "Influences of longitudinal magnetic field on wave propagation in carbon nanotubes embedded in elastic matrix", Appl. Math. Model., 34(4), 878‑889. https://doi.org/10.1016/j.apm.2009.07.005. 
  89. Wei, L. and Wang, Y.N. (2004), "Electromagnetic wave propagation in single-wall carbon nanotubes", Phys. Lett., Sect. A: Gener. Atomic Solid State Phys., 333(3-4), 303‑309. https://doi.org/10.1016/j.physleta.2004.10.048. 
  90. Winkler E. (1867), "Die lehhre von der eiastizitat und Festigkeit (on elasticity and fixity)", Dominicus, Prague, 182. 
  91. Wu, X. and Fang, T. (2022), "Intelligent computer modeling of large amplitude behavior of FG inhomogeneous nanotubes", Adv. Nano Res., 12(6), 617-627. https://doi.org/10.12989/anr.2022.12.6.617. 
  92. Yaylaci, M., Abanoz, M., Yaylaci, E.U., O lmez, H., Sekban, D.M. and Birinci, A. (2022), "The contact problem of the functionally graded layer resting on rigid foundation pressed via rigid punch", Steel Compos. Struct., 43(5), 661-672. https://doi.org/10.12989/scs.2022.43.5.661. 
  93. Yusufoglu, E. and Avey, M, (2021), "Nonlinear dynamic behavior of hyperbolic paraboloidal shells reinforced by carbon nanotubes with various distributions", J. Appl. Comput. Mech., 7(2), 913-921. https://doi.org/10.22055/jacm.2021.36043.2783. 
  94. Zenzen, R., Khatir, S., Belaidi, I., Cuong-Le, T. and Abdel Wahab, M. (2020), "A modified transmissibility indicator and Artificial Neural Network for damage identification and quantification in laminated composite structures", Compos. Struct., 248, 112497. https://doi.org/10.1016/j.compstruct.2020.112497. 
  95. Zhang, L., Wu, G.T. and Wu, J. (2019), "A Kerr-type elastic foundation model for the buckling analysis of a beam bonded on an elastic layer", ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, 99(10), 1-19. https://doi.org/10.1002/zamm.201900162. 
  96. Zhu, F.Y., Lim, H.J., Choi, H. and Yun, G.J. (2022), "A hierarchical micromechanics model for nonlinear behavior with damage of SMC composites with wavy fiber", Compos. Mater. Eng., 4(1), 1-21. https://doi.org/10.12989/cme.2022.4.1.001.