• Title/Summary/Keyword: mechanical buckling

Search Result 664, Processing Time 0.023 seconds

Optimum Shape for Buckling and Post-Buckling Behavior of a Laminated Composite Panel with I-type Stiffeners

  • Lee, Gwang-Rog;Yang, Won-Ho;Sub, Myung-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1211-1221
    • /
    • 2002
  • A shape optimization of stiffener was conducted to increase buckling load or failure load with stiffened laminated composite panel of I-type under compression loading. Design variables are cap length, web length, and/or thickness under the constraint of volume constancy. The objective function is buckling load and failure load of post-buckling based on Tsai-Hill theory using ABAQUS 5.8 for analysis and Optimizer on Broydon-Fletcher Goldfarb-Sharno Method and Augmented Lagrange Multiplier Method. The effects of relative length of a web and a cap of stiffener on buckling load and failure load of post-buckling were investigated with the results of optimum design.

Buckling Characteristics of Skin-Stringer Composite Stiffened Panel

  • Noh, Ji-Sub;Ghim, Yeong-Taek;Shin, Joon-Hyung;Kwon, Bo-Seong;Byun, Joon-Hyung;Nam, Young-Woo;Kweon, Jin-Hwe
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.6
    • /
    • pp.68-73
    • /
    • 2020
  • Skin-stringer structures are widely used in aircrafts due to their advantage of minimizing structural weight while maintaining load carrying capacity. However, buckling load can cause serious damage to these structures. Therefore, the buckling characteristics of skin-stringer structures should be carefully considered during the design phase to ensure structural soundness. In this study, finite element method was applied to predict the buckling characteristics of stiffened panels. In terms of the failure mode, finite element analysis showed a symmetrical buckling mode, whereas an asymmetrical mode was determined by experimentation. The numerical results were obtained and compared to the experimental data, showing a difference of 9.3% with regard to the buckling loads.

An Approximate Method for the Buckling Analysis of a Composite Lattice Rectangular Plate

  • Kim, Yongha;Kim, Pyunghwa;Kim, Hiyeop;Park, Jungsun
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.450-466
    • /
    • 2017
  • This paper defines the modified effective membrane stiffness, bending stiffness considering the directionally dependent mechanical properties and mode shape function of a composite lattice rectangular plate, which is assumed to be a Kirchhoff-Love plate. It subsequently presents an approximate method of conducting a buckling analysis of the composite lattice rectangular plate with various boundary conditions under uniform compression using the Ritz method. This method considers the coupled buckling mode as well as the global and local buckling modes. The validity of the present method is verified by comparing the results of the finite element analysis. In addition, this paper performs a parametric analysis to investigate the effects of the design parameters on the critical load and buckling mode shape of the composite lattice rectangular plate based on the present method. The results allow a database to be obtained on the buckling characteristics of composite lattice rectangular plates. Consequently, it is concluded that the present method which facilitates the calculation of the critical load and buckling mode shape according to the design parameters as well as the parametric analysis are very useful not only because of their structural design but also because of the buckling analysis of composite lattice structures.

Mechanical buckling of functionally graded plates using a refined higher-order shear and normal deformation plate theory

  • Zenkour, A.M.;Aljadani, M.H.
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.6
    • /
    • pp.615-632
    • /
    • 2018
  • Mechanical buckling of a rectangular functionally graded plate is obtained in the current paper using a refined higher-order shear and normal deformation theory. The impact of transverse normal strain is considered. The material properties are microscopically inhomogeneous and vary continuously based on a power law form in spatial direction. Navier's procedure is applied to examine the mechanical buckling behavior of a simply supported FG plate. The mechanical critical buckling subjected to uniaxial and biaxial compression loads are determined. The numerical investigation are compared with the numerical results in the literature. The influences of geometric parameters, power law index and different loading conditions on the critical buckling are studied.

On post-buckling characteristics of functionally graded smart magneto-electro-elastic nanoscale shells

  • Asrari, Reza;Ebrahimi, Farzad;Kheirikhah, Mohammad Mahdi
    • Advances in nano research
    • /
    • v.9 no.1
    • /
    • pp.33-45
    • /
    • 2020
  • Geometrically nonlinear buckling of functionally graded magneto-electro-elastic (FG-MEE) nanoshells with the use of classical shell theory and nonlocal strain gradient theory (NSGT) has been analyzed in present research. Mathematical formulation based on NSGT gives two scale coefficients for simultaneous description of structural stiffness reduction and increment. Functional gradation of material properties is described based on power-law formulation. The nanoshell is under a multi-physical field related to applied voltage, magnetic potential, and mechanical load. Exerting a strong electric voltage, magnetic potential or mechanical load may lead to buckling of nanoshell. Taking into account geometric nonlinearity effects after buckling, the behavior of nanoshell in post-buckling regime can be analyzed. Nonlinear governing equations are reduced to ordinary equations utilizing Galerkin's approach and post-buckling curves are obtained based on an analytical procedure. It will be shown that post-buckling curves are dependent on nonlocal/strain gradient parameters, electric voltage magnitude and sign, magnetic potential magnitude and sign and material gradation exponent.

Nonlinear thermal post-buckling analysis of graphene platelets reinforced metal foams plates with initial geometrical imperfection

  • Yin-Ping Li;Gui-Lin She;Lei-Lei Gan;Hai-Bo Liu
    • Steel and Composite Structures
    • /
    • v.46 no.5
    • /
    • pp.649-658
    • /
    • 2023
  • Although some scholars have studied the thermal post-buckling of graphene platelets strengthened metal foams (GPLRMFs) plates, they have not considered the influence of initial geometrical imperfection. Inspired by this fact, the present paper studies the thermal post-buckling characteristics of GPLRMFs plates with initial geometrical imperfection. Three kinds of graphene platelets (GPLs) distribution patterns including three patterns have been considered. The governing equations are derived according to the first-order plate theory and solved with the help of the Galerkin method. According to the comparison with published paper, the accuracy and correctness of the present research are verified. In the end, the effects of material properties and initial geometrical imperfection on the thermal post-buckling response of the GPLRMFs plates are examined. It can be found that the presence of initial geometrical imperfection reduces the thermal post-buckling strength. In addition, the present study indicates that GPL-A pattern is best way to improve thermal post-buckling strength for GPLRMFs plates, and the presence of foams can improve the thermal post-buckling strength of GPLRMFs plates, the Foam- II and Foam- I patterns have the lowest and highest thermal post-buckling strength. Our research can provide guidance for the thermal stability analysis of GPLRMFs plates.

A Study on Shape Optimization for Buckling and Postbuckling Behavior of Stiffened Laminated Composite Panels (보강된 복합적층 패널의 좌굴 및 좌굴후 거동의 형상 최적설계에 관한 연구)

  • Lee, Gwang-Rok;Jeong, Gi-Hyeon;Heo, Seong-Pil;Yang, Won-Ho;Jo, Myeong-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.106-114
    • /
    • 2001
  • In this study, a shape optimization of stiffener was conducted to increase buckling load or failure load in each case with a different design value and a different objective function for stiffened laminated composite panel of I-type under compression loading. Regarding each of buckling load or failure load as objective function, optimum design was carried out. In respect of optimum design, the effects of relative length of web and cab of stiffener on buckling load or failure load of postbuckling were investigated.

Buckling of an elastic plate due to surface-attached thin films with intrinsic stresses

  • Zhu, J.;Yang, J.S.;Ru, C.Q.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.89-95
    • /
    • 2014
  • We analyze the buckling of a thin elastic plate due to intrinsic stresses in thin films attached to the surfaces of the plate. In the case of cylindrical buckling, it is shown that for a plate with clamped edges compressive intrinsic film stresses can cause flexural buckling of the plate, while tensile intrinsic film stresses cannot. For a plate with free edges, film intrinsic stresses, compressive or tensile, cannot cause buckling.

Bending, buckling, and free vibration analyses of carbon nanotube reinforced composite beams and experimental tensile test to obtain the mechanical properties of nanocomposite

  • Mohammadimehr, M.;Mohammadi-Dehabadi, A.A.;Akhavan Alavi, S.M.;Alambeigi, K.;Bamdad, M.;Yazdani, R.;Hanifehlou, S.
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.405-422
    • /
    • 2018
  • In this research, experimental tensile test and manufacturing of carbon nanotube reinforced composite beam (CNTRC) is presented. Also, bending, buckling, and vibration analysis of CNTRC based on various beam theories such as Euler-Bernoulli, Timoshenko and Reddy beams are considered. At first, the experimental tensile tests are carried out for CNTRC and composite beams in order to obtain mechanical properties and then using Hamilton's principle the governing equations of motion are derived for Euler Bernoulli, Timoshenko and Reddy theories. The results have a good agreement with the obtained results by similar researches and it is shown that adding just two percent of carbon nanotubes increases dimensionless fundamental frequency and critical buckling load as well as decreases transverse deflection of composite beams. Also, the influences of different manufacturing processes such as hand layup and industrial methods using vacuum pump on composite properties are investigated. In these composite beams, glass fibers used in an epoxy matrix and for producing CNTRC, CNTs are applied as reinforcement particles. Applying two percent of CNTs leads to increase the mechanical properties and increases natural frequencies and critical buckling load and decreases deflection. The obtained natural frequencies and critical buckling load by theoretical method are higher than other methods, because there are some inevitable errors in industrial and hand layup method. Also, the minimum deflection occurs for theoretical methods, in bending analysis. In this study, Young's and shear modulli as well as density are obtained by experimental test and have not been used from the results of other researches. Then the theoretical analysis such as bending, buckling and vibration are considered by using the obtained mechanical properties of this research.

Thermal post-buckling analysis of porous functionally graded pipes with initial geometric imperfection

  • Xu, Jia-Qin;She, Gui-Lin
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.329-337
    • /
    • 2022
  • In this paper, the thermal post-buckling characteristics of functionally graded (FG) pipes with initial geometric imperfection are studied. Considering the influence of initial geometric defects, temperature and geometric nonlinearity, Euler-Lagrange principle is used to derive the nonlinear governing equations of the FG pipes. Considering three different boundary conditions, the two-step perturbation method is used to solve the nonlinear governing equations, and the expressions of thermal post-buckling responses are also obtained. Finally, the correctness of this paper is verified by numerical analyses, and the effects of initial geometric defects, functional graded index, elastic foundation, porosity, thickness of pipe and boundary conditions on thermal post-buckling response are analyzed. It is found that, bifurcation buckling exists for the pipes without initial geometric imperfection. In contrast, there is no bifurcation buckling phenomenon for the pipes with initial geometric imperfection. Meanwhile, the elastic stiffness can significantly improve thermal post-buckling load and thermal post-buckling strength. The larger the porosity, the greater the thermal buckling load and the thermal buckling strength.