DOI QR코드

DOI QR Code

Target candidate fish species selection method based on ecological survey for hazardous chemical substance analysis

유해화학물질 분석을 위한 생태조사 기반의 타깃 후보어종 선정법

  • Ji Yoon Kim (Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University) ;
  • Sang-Hyeon Jin (Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University) ;
  • Min Jae Cho (Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University) ;
  • Hyeji Choi (Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University) ;
  • Kwang-Guk An (Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University)
  • 김지윤 (충남대학교 생명시스템과학대학 생명과학과) ;
  • 진상현 (충남대학교 생명시스템과학대학 생명과학과) ;
  • 조민재 (충남대학교 생명시스템과학대학 생명과학과) ;
  • 최혜지 (충남대학교 생명시스템과학대학 생명과학과) ;
  • 안광국 (충남대학교 생명시스템과학대학 생명과학과)
  • Received : 2023.02.16
  • Accepted : 2023.05.15
  • Published : 2023.06.30

Abstract

This study was conducted to select target fish species as baseline research for accumulation analysis of major hazardous chemicals entering the aquatic ecosystem in Korea and to analyze the impact on fish community. The test bed was selected from a sewage treatment plant, which could directly confirm the impact of the inflow of harmful chemicals, and the Geum River estuary where harmful chemicals introduced into the water system were concentrated. A multivariable metric model was developed to select target candidate fish species for hazardous chemical analysis. Details consisted of seven metrics: (1) commercially useful metric, (2) top-carnivorous species metric, (3) pollution fish indicator metric, (4) tolerance fish metric, (5) common abundant metric, (6) sampling availability (collectability) metric, and (7) widely distributed fish metric. Based on seven metric models for candidate fish species, eight species were selected as target candidates. The co-occurring dominant fish with target candidates was tolerant (50%), indicating that the highest abundance of tolerant species could be used as a water pollution indicator. A multi-metric fish-based model analysis for aquatic ecosystem health evaluation showed that the ecosystem health was diagnosed as "bad conditions". Physicochemical water quality variables also influenced fish feeding and tolerance guild in the testbed. Eight water quality parameters appeared high at the T1 site, indicating a large impact of discharging water from the sewage treatment plant. T2 site showed massive algal bloom, with chlorophyll concentration about 15 times higher compared to the reference site.

본 연구는 우리나라에서 수생태계에 유입되는 주요 유해화학물질 축적 분석을 위한 타깃 후보종 선정과 이에 따른 어류 군집의 영향을 분석하였다. 레퍼런스 하천 선정과 함께 유해화학물질 유입의 영향을 직접적으로 받는 하수종말처리장(T1)과 수계로 유입된 유해화학물질이 집중되는 금강하구언(T2)의 테스트배드를 분석하였다. 유해화학물질 분석을 위한 타깃 후보종 선정을 위해 7-메트릭 다변수 모델을 개발하였으며, 세부항목은 (1) 상업적으로 유용하며 식용으로 이용하는 어종, (2) 최상위 육식종 어종, (3) 유기물 섭취 어종, (4) 내성도가 높은 어종, (5) 개체수가 풍부한 어종, (6) 채집 가능성이 높은 어종, (7) 광범위하게 분포하는 어종 등 총 7개 메트릭으로 구성되었다. 타깃 후보어종에 대한 7개 메트릭 모델을 기반으로 8종이 대상 후보로 선정되었다. 타깃 후보종과 함께 공서하는 우점어종은 내성종(50%)이었으며, 이는 수질 오염 지표로 자주 사용되는 내성종의 풍부도가 가장 높은 것으로 나타났다. 또한, 수생태계 건강성 평가를 위한 다변량 어류 기반 모델 분석에서는 생태계 건강성이 "나쁨 상태"까지 진단되는 것으로 나타났다. 이화학적인 수질 변수는 테스트배드에서 섭식 및 내성길드에 영향을 미치는 것으로 나타났다. 8개의 수질 변수는 T1 지점에서 높게 나타나 하수처리장의 방류수에 따른 영향이 컸으며, T2 지점은 대규모 녹조 현상이 나타나 클로로필 농도가 레퍼런스 지점보다 약 15배 높은 것으로 나타났다.

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 한국환경산업기술원 수생태계 건강성 확보 기술개발사업의 지원을 받아 연구되었습니다(2020003050004).

References

  1. Abdel-Baki AS, MA Dkhil and S Al-Quraishy. 2011. Bioaccumulation of some heavy metals in tilapia fish relevant to their concentration in water and sediment of Wadi Hanifah, Saudi Arabia. Afr. J. Biotechnol. 10:2541-2547.
  2. An KG and JH Kim. 2005. A diagnosis of ecological health using a physical habitat assessment and multimetric fish model in Daejeon stream. Korean J. Limnol. 38:361-371.
  3. Bae DY and KG An. 2006. Stream ecosystem assessments, based on a biological multimetric parameter model and water chemistry analysis. Korean J. Limnol. 39:198-208.
  4. Bae KS, GB Kim, HK Kil, BT Yu and MY Kim. 2002. Long-term changes of the fish fauna and community structure in the Jungrang Creek, Seoul, Korea. Korean J. Limnol. 35:63-70.
  5. Chapman PM. 2000. Whole effluent toxicity testing-usefulness, level of protection, and risk assessment. Environ. Toxicol. Chem. 19:3-13. https://doi.org/10.1002/etc.5620190102
  6. Chi QQ, GW Zhu and A Langdon. 2007. Bioaccumulation of heavy metals in fishes from Taihu Lake, China. J. Environ. Sci. 19:1500-1504. https://doi.org/10.1016/S1001-0742(07)60244-7
  7. Cho JL, SJ Hwang, KJ Cho and JK Shin. 2000. Eutrophication and water pollution characteristics of the Kyongan Stream to Paltang Reservoir. Kor. J. Limnol. 33:387-394.
  8. Chung SJ and KB Yoo. 1990. A study on the heavy metal contents of fresh water fishes in the Keum river. Korean J. Environ. Biol. 8:59-69.
  9. Cui L, J Ge, Y Zhu, Y Yang and J Wang. 2015. Concentrations, bioaccumulation, and human health risk assessment of organochlorine pesticides and heavy metals in edible fish from Wuhan, China. Environ. Sci. Pollut. Res. 22:15866-15879. https://doi.org/10.1007/s11356-015-4752-8
  10. Dean TL and J Richardson. 1999. Responses of seven species of native freshwater fish and a shrimp to low levels of dissolved oxygen. N. Z. J. Mar. Freshw. Res. 33:99-106. https://doi.org/10.1080/00288330.1999.9516860
  11. Dyer SD and X Wang. 2002. A comparison of stream biological responses to discharge from wastewater treatment plants in high and low population density areas. Environ. Toxicol. Chem. 21:1065-1075. https://doi.org/10.1002/etc.5620210524
  12. Han JH and KG An. 2013. Chemical water quality and fish community characteristics in the mid- to downstream reach of Geum river. Korean J. Environ. Biol. 31:180-188. https://doi.org/10.11626/KJEB.2013.31.3.180
  13. Hart BT, P Bailey, R Edwards, K Hortle, K James, A McMahon, C Meredith and K Swadling. 1990. Effects of salinity on river, stream and wetland ecosystems in Victoria, Australia. Water Res. 24:1103-1117. https://doi.org/10.1016/0043-1354(90)90173-4
  14. Hora PI, SG Pati, PJ McNamara and WA Arnold. 2020. Increased use of quaternary ammonium compounds during the SARS-CoV-2 pandemic and beyond: consideration of environmental implications. Environ. Sci. Technol. Lett. 7:622-631. https://doi.org/10.1021/acs.estlett.0c00437
  15. Hung MD, NH Lam, HH Jeong, HJ Jeong, DJ Jeong, GH Park, PJ Kim, JE OH and HS Cho. 2018. Perfluoroalkyl substances (PFASs) in ten edible freshwater fish species from major rivers and lakes in Korea: Distribution and human exposure by consumption. Toxicol. Environ. Health Sci. 10:307-320. https://doi.org/10.1007/s13530-018-0379-8
  16. Jang MH, JG Kim, SB Park, KS Jeong, GI Cho and GJ Joo. 2002. The current status of the distribution of introduced fish in large river systems of South Korea. Int. Rev. Hydrobiol. 87: 319-328. https://doi.org/10.1002/1522-2632(200205)87:2/3<319::AID-IROH319>3.0.CO;2-N
  17. Jang SH, CI Zhang, JH Na and JH Lee. 2008. Analysis of trophic structures and energy flows in aquatic ecosystem of the lower reaches of the Nakdong river. Korean J. Environ. Biol. 26:292-302.
  18. Jeong DH, SY Ham, W Lee, H Chung and H Kim. 2017. Study on occurrence and management of organic micropollutants in sewer systems. J. Korean Soc. Water Wastew. 31:551-566. https://doi.org/10.11001/jksww.2017.31.6.551
  19. Kang YJ, SJ Lee and KG An. 2019. Physical habitat and chemical water quality characteristics on the distribution patterns of ecologically disturbing fish (Largemouth bass and Bluegill) in Dongjin-river watershed. Korean J. Environ. Biol. 37:177-188. https://doi.org/10.11626/KJEB.2019.37.2.177
  20. Karr JR. 1991. Biological integrity: A long neglected aspect of water resource management. Ecol. Appl. 1:66-84. https://doi.org/10.2307/1941848
  21. Karr JR, RC Heidinger and EH Helmer. 1985. Effects of chlorine and ammonia from wastewater treatment facilities on biotic integrity. J. Water Pollut. Control Fed. 57:912-915.
  22. Kim HJ and KG An. 2020. Impacts of stream water quality and fish histopathology by effluents of wastewater treatment plant. Korean J. Environ. Biol. 120:678-690. https://doi.org/10.11626/KJEB.2020.38.4.678
  23. Kim IJ, HJ Kim, DH Han, GB Kim and HE Kwak. 2017. A Study on Rational Improvement of Public Sewage Treatment Facility Management System for Advancement of Public Waters Quality. Korean Environment Institute. Sejong, Korea. pp. 5-17.
  24. Kim MK, KS Choi, MK Shin, BP Kim and KN Han. 2015. Age and growth of redlip mullet (Chelon haematocheilus) in the Han River estuary, Korea. Korean J. Ichthyol. 27:133-141.
  25. Kosmala A, B Migeon, P Flammarion and J Garric. 1998. Impact assessment of a wastewater treatment plant effluent using the fish biomarker ethoxyresorufin-O-deethylase: field and on-site experiments. Ecotox. Environ. Saf. 41:19-28. https://doi.org/10.1006/eesa.1998.1662
  26. Kwon HH, JH Han, J Yoon and KG An. 2013. Influence of fish compositions and trophic/tolerance guilds on the fishkills in Geum-river watershed (Backje weir). Korean J. Environ. Biol. 31:393-401. https://doi.org/10.11626/KJEB.2013.31.4.393
  27. Lee EH, KH Chang, DI Seo, JY Choi, GJ Joo, M Kim, JH Shin, M Son and GS Nam. 2014. The characteristics of fish community and food web in eutrophic agricultural reservoir, Jeondae. Korean J. Environ. Biol. 32:319-326. https://doi.org/10.11626/KJEB.2014.32.4.319
  28. Lee EH, M Kim, HM Kim, M Son, KH Chang and GS Nam. 2013b. Ecological characteristics and distribution of fish in the downstream region of Gyeongan Stream. Korean J. Environ. Biol. 31:478-485. https://doi.org/10.11626/KJEB.2013.31.4.478
  29. Lee EH, SH Yoon, JH Lee and KG An. 2008. Total mercury contents in the tissues of Zacco platypus and ecological health assessments in association with stream habitat characteristics. Korean J. Limnol. 41:188-197.
  30. Lee J and DK Park. 2016. Toxic effects of metal plating wastewater on Daphnia magna and Euglena agilis. Korean J. Environ. Biol. 34:116-23. https://doi.org/10.11626/KJEB.2016.34.2.116
  31. Lee JH, H Han, JY Lee, YS Cha and SJ Cho. 2022. Ecological health assessment of Yangjaecheon and Yeouicheon using biotic index and water quality. Korean J. Environ. Biol. 40:172-186. https://doi.org/10.11626/KJEB.2022.40.2.172
  32. Lee JH, JH Han, BJ Lim, JK Shin and KG An. 2013c. Comparative analysis of fish fauna and community structures before and after the artificial weir construction in the mainstreams and tributaries of Yeongsan river watershed. Korean J. Ecol. Environ. 46:103-115. https://doi.org/10.11614/KSL.2013.46.1.103
  33. Lee JW, JH Kim, SH Park, KR Choi, HJ Lee, JD Yoon and MH Jang. 2013a. Impact of Largemouth Bass (Micropterus salmoides) on the Population of Korean Native Fish, Crucian Carp (Carassius auratus). Korean J. Environ. Biol. 31:370-375. https://doi.org/10.11626/KJEB.2013.31.4.370
  34. Lee MH, JS Lee and SK Ham. 2005. A study on the distribution property of organic pollutants in effluents from domestic sewage treatment plans throughout Youngsan river. J. Korean Soc. Environ. Eng. 27:1332-1339.
  35. Linde AR, P Arribas, S Sanchez-Galan and E Garcia-Vazquez. 1996. Eel (Anguilla anguilla) and brown trout (Salmo trutta) target species to assess the biological impact of trace metal pollution in freshwater ecosystems. Arch. Environ. Contam. Toxicol. 31:297-302. https://doi.org/10.1007/BF00212668
  36. Maezono Y, R Kobayashi, M Kusahara and T Miyashita. 2005. Direct and indirect effects of exotic bass and bluegill on exotic and native organisms in farm ponds. Ecol. Appl. 15:638-650. https://doi.org/10.1890/02-5386
  37. MOE. 2009. Feasibility Study on the Application of Physicochemical Process for Phosphorous Removal in Environmental Facilities Located in Upper Reaches of the Watershed Lake (Ordinance of the Ministry of Environment No. 3). Ministry of Environment. Sejong, Korea.
  38. Mullins WH. 1999. Biotic Integrity of the Boise River Upstream and Downstream from Two Municipal Wastewater Treatment Facilities, Boise, Idaho, 1995-96 (No. 98-4123). United States Geological Survey. https://doi.org/10.3133/wri984123
  39. Nelson JS. 2006. Fishes of the World. 4th edition. John Wiley & Sons. New Jersey.
  40. NIER. 2017. Biomonitoring Survey and Assessment Manual. National Institute of Environmental Research. Incheon, Korea.
  41. NIER. 2020. Stream/River Ecosystem Survey and Health Assessment (2020). National Institute of Environmental Research. Incheon, Korea.
  42. Park H, SM Park, KC Lee, SJ Yu, OS Kwon and SJ Kim. 2011. Survey of physicochemical methods and economic analysis of domestic wastewater treatment plant for advanced treatment of phosphorus removal. J. Korean Soc. Environ. Eng. 33:212-221. https://doi.org/10.4491/KSEE.2011.33.3.212
  43. Park YJ, SJ Lee and KG An. 2019. Analysis of fish ecology and water quality for health assessments of Geum-river watershed. Korean J. Environ. Ecol. 33:187-201. https://doi.org/10.13047/KJEE.2019.33.2.187
  44. Piria M, P Simonovic, D Zanella, M Caleta, N Sprem, M Paunovic, T Tomljanovic, A Gavrilovic, M Pecina, I Spelic, D Matulic, A Rezic, I Anicic, R Safner and T Treer. 2019. Long-term analysis of fish assemblage structure in the middle section of the Sava river - The impact of pollution, flood protection and dam construction. Sci. Total Environ. 651:143-153. https://doi.org/10.1016/j.scitotenv.2018.09.149
  45. Preziosi DV and RA Pastorok. 2008. Ecological food web analysis for chemical risk assessment. Sci. Total Environ. 406:491-502. https://doi.org/10.1016/j.scitotenv.2008.06.063
  46. Ra JS, SD Kim, KG An and NI Chang. 2005. The Whole effluent toxicity tests of wastewater discharged from various wastewater treatment plants and their impact analyses on biological component. J. Korean Soc. Environ. Eng. 27:353-361.
  47. Ra JS, SD Kim, NI Chang and KG An. 2007. Ecological health assessments based on whole effluent toxicity tests and the index of biological integrity in temperate streams influenced by wastewater treatment plant effluents. Environ. Toxicol. Chem. 26:2010-2018. https://doi.org/10.1897/06-542R.1
  48. Rahman MS, AH Molla, N Saha and A Rahman. 2012. Study on heavy metals levels and its risk assessment in some edible fishes from Bangshi river, Savar, Dhaka, Bangladesh. Food Chem. 134:1847-1854. https://doi.org/10.1016/j.foodchem.2012.03.099
  49. Rajeshkumar S and X Li. 2018. Bioaccumulation of heavy metals in fish species from the Meiliang Bay, Taihu Lake, China. Toxicol. Rep. 5:288-295. https://doi.org/10.1016/j.toxrep.2018.01.007
  50. Rodriguez-Cea A, F Ayllon and E Garcia-Vazquez. 2003. Micronucleus test in freshwater fish species: an evaluation of its sensitivity for application in field surveys. Ecotox. Environ. Safe. 56:442-448. https://doi.org/10.1016/S0147-6513(03)00073-3
  51. Saylor RK, NWR Lapointe and PL Angermeier. 2012. Diet of non-native northern snakehead (Channa argus) compared to three co-occurring predators in the lower Potomac River, USA. Ecol. Freshw. Fish 21:443-452. https://doi.org/10.1111/j.1600-0633.2012.00563.x
  52. Schulz EJ, MV Hoyer and DE Canfield Jr. 1999. An index of biotic integrity: a test with limnological and fish data from sixty Florida lakes. Trans. Am. Fish. Soc. 128:564-577. https://doi.org/10.1577/1548-8659(1999)128<0564:AIOBIA>2.0.CO;2
  53. Tashla T, M Zuza, T Kenjves, R Prodanovic, D Solesa, V Bursic, A Petrovic, D Ljubojevic Pelic, J Boskovic and N Puvaca. 2018. Fish as an important bio-indicator of environmental pollution with persistent organic pollutants and heavy metals. J. Agron. Technol. Eng. Manag. 1:52-56.
  54. UNEP. 2003. Master List of Actions: On the Reduction and/or Elimination of the Releases of Persistent Organic Pollutants. 5th edition. United Nations Environment Programme. Geneva, Switzerland.
  55. US EPA. 1988. WQS Draft Framework for the Water Quality Program. Draft 11-8-88. United States Environmental Protection Agency. Washington, D.C.
  56. US EPA. 1991. Technical Support Document for Water quality based toxics control (EPA 505-2-90-001). United States Environmental Protection Agency. Washington, D.C.
  57. US EPA. 1993. Fish field and laboratory methods for evaluating the biological Integrity of Surface Waters(EPA 600-R-92-111). United States Environmental Protection Agency. Washington, D.C.
  58. US EPA. 1999. the national survey of mercury concentrations in fish: data base summary 1990-1995 (EPA 823-R-99-014). United States Environmental Protection Agency. Washington, D.C.
  59. US EPA. 2000. Quality Assurance Project Plan for Analytical Control and Assessment Activities in the National Study of Chemical Residues in Lake Fish Tissue(EPA/823-R-02-006). United States Environmental Protection Agency. Washington, D.C.
  60. Van Putten M. 1989. Issues in applying water quality criteria. pp. 175-177. In: Water Quality Standards for the 21st Century (Flock GH ed.). United States Environmental Protection Agency. Washington, D.C.
  61. Xie W, J Zhao, Q Zhang, C Ye, G Zheng, Q Shan, L Li and X Shao. 2020. Occurrence, distribution and bioaccumulation of alkylphenols in the Pearl River networks, South China. Ecol. Indic. 110:105847. https://doi.org/10.1016/j.ecolind.2019.105847
  62. Zhang G, Z Pan, A Bai, J Li and X Li. 2014. Distribution and bioaccumulation of organochlorine pesticides (OCPs) in food web of Nansi Lake, China. Environ. Monit. Assess. 186:2039-2051. https://doi.org/10.1007/s10661-013-3516-5