DOI QR코드

DOI QR Code

Microwave Dielectric Properties of (Mg1-xNix)(Ti0.95(Mg1/3Ta2/3)0.05)O3 Ceramics

(Mg1-xNix)(Ti0.95(Mg1/3Ta2/3)0.05)O3 세라믹스의 마이크로파 유전 특성

  • Ju Hye Kim (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Si Hyun Kim (Department of Advanced Materials Engineering, Kyonggi University) ;
  • Eung Soo Kim (Department of Advanced Materials Engineering, Kyonggi University)
  • 김주혜 (경기대학교 신소재공학과) ;
  • 김시현 (경기대학교 신소재공학과) ;
  • 김응수 (경기대학교 신소재공학과)
  • Received : 2023.06.05
  • Accepted : 2023.08.02
  • Published : 2023.08.27

Abstract

The effects of Ni2+ substitution for Mg2+-sites on the microwave dielectric properties of (Mg1-xNix)(Ti0.95(Mg1/3Ta2/3)0.05)O3 (0.01 ≤ x ≤ 0.05) (MNTMT) ceramics were investigated. MNTMT ceramics were prepared by conventional solid-state reaction. When the MgO / TiO2 ratio was changed from 1.00 to 1.02, MgTi2O5 was detected as a secondary phase along with the MgTiO3 main phase in the MNTMT specimens sintered at 1,400 ℃ for 4h. For the MNTMT specimens with MgO / TiO2 = 1.07 sintered at 1,400 ℃ for 4h, a single phase of MgTiO3 with an ilmenite structure was obtained from the entire range of compositions. The relative density of all the specimens sintered at 1,400 ℃ for 4h was higher than 95 %. The quality factor (Qf) of the sintered specimens depended strongly on the degree of covalency of the specimens, and the sintered specimens with x = 0.01 showed the maximum Qf value of 489,400 GHz. The dielectric constant (K) decreased with increasing Ni2+ content because Ni2+ had a lower dielectric polarizability (1.23Å3) than Mg2+ (1.32Å3). As Ni2+ content increased, the temperature coefficient of resonant frequency (TCF) improved, from -55.56 to -21.85 ppm/℃, due to the increase in tolerance factor (t) and the lower dielectric constant (K).

Keywords

Acknowledgement

This work was supported by Kyonggi University's Graduate Research Assistantship 2023.

References

  1. J. Kui, J. Phys.: Conf. Ser., 1885, 032034 (2021).
  2. R. J. Cava, J. Mater. Chem., 11, 54 (2001).
  3. J. H. Sohn, Y. Inaguma, S. O. Yoon, M. Itoh, T. Nakamura, S. J. Yoon and H. J. Kim, Jpn. J. Appl. Phys., 33, 5466 (1994).
  4. Y. Guo, H. Ohsato and K. Kakimoto, J. Eur. Ceram. Soc., 26, 1827 (2006).
  5. H. Ohsato, T. Tsunooka, M. Ando, Y. Ohishi, Y. Miyauchi and K. Kakimoto, J. Korean Ceram. Soc., 40, 350 (2003).
  6. Q. Liao, L. Li, P. Zhang, L. Cao and Y. Han, Mater. Sci. Eng., B, 176, 41 (2011).
  7. I. D. Brown and K. K. Wu, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 32, 1957 (1976).
  8. T. Roisnel and J. R. Carvajal, Mater. Sci. Forum, 378-381, 118 (2001).
  9. H. Yu, X. Xue and G. Xu, Int. J. Appl. Ceram. Technol., 10, E186 (2013).
  10. C. F. Tseng, J. Alloys Compd., 509, 9447 (2011).
  11. H. J. Jo and E. S. Kim, J. Eur. Ceram. Soc., 36, 1399 (2016).
  12. H. J. Jo, J. S. Kim and E. S. Kim, Ceram. Int., 41, S530 (2015).
  13. M. Zhang, L. Li, W. Xia and Q. Liao, J. Alloys Compd., 537, 76 (2012).
  14. B. A. Wechsler and R. B. Von Dreele, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 45, 542 (1989).
  15. V. N. Reddy, K. C. Babu Naidu and T. Subbarao, J. Ovonic Res., 12, 185 (2016).
  16. B. W. Hakki and P. D. Coleman, IRE Trans. Microwave Theory Tech., 8, 402 (1960).
  17. Y. Kobayashi and M. Katoh, IEEE Trans. Microwave Theory Tech., 33, 586 (1985).
  18. T. Nishikawa, K. Wakino, H. Tamura, H. Tanaka and Y. Ishikawa, 1987 IEEE MTT-S International Microwave Symposium Digest (Palo Alto, CA, USA, 1987) p. 277.
  19. W. W. Cho, K. Kakimoto and H. Ohsato, Jpn. J. Appl. Phys., 43, 6221 (2004).
  20. H. Cheng, B. Xu and J. Ma, J. Mater. Sci. Lett., 16, 1570 (1997).
  21. K. Sreedhar and N. R. Pavaskar, Mater. Lett., 53, 452 (2002).
  22. X. Zhou, Y. Yuan, L. Xiang and Y. Huang, J. Mater. Sci., 42, 6628 (2007).
  23. A. B. Spierings, M. Schneider and R. Eggenberger, Rapid Prototyping J., 17, 380 (2011).
  24. Y. Canchanya-Huaman, A. F. Mayta-Armas, J. Pomalaya-Velasco, Y. Bendezu-Roca, J. A. Guerra and J. A. Ramos-Guivar, Nanomaterials, 11, 2311 (2021).
  25. P. S. Jangade, Int. J. Res. Anal. Rev., 8, 361 (2021).
  26. I. D. Brown and D. Altermatt, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 41, 244 (1985).
  27. I. D. Brown and R. D. Shannon, Acta Crystallogr., Sect. A: Found. Adv., 29, 266 (1973).
  28. A. Kan, H. Ogawa and H. Ohsato, Jpn. J. Appl. Phys., 46, 7108 (2007).
  29. J. J. Bian, D. W. Kim and K. S. Hong, J. Eur. Ceram. Soc., 23, 2589 (2003).
  30. I. D. Brown, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem., 48, 553 (1992).
  31. Y. M. Miao, Q. L. Zhang, H. Yang and H. P. Wang, Mater. Sci. Eng., B, 128, 103 (2006).
  32. R. D. Shannon, J. Appl. Phys., 73, 348 (1993).
  33. C. Zhang, R. Zuo, J. Zhang and Y. Wang, J. Am. Ceram. Soc., 98, 702 (2015).
  34. E. S. Kim and K. H. Yoon, J. Eur. Ceram. Soc., 23, 2397 (2003).
  35. X. C. Liu, R. Hong and C. Tian, J. Mater. Sci.: Mater. Electron., 20, 323 (2009).
  36. C. F. Tseng, T. C. Wei and S. C. Lu, Ceram. Int., 40, 7081 (2014).