DOI QR코드

DOI QR Code

Surface Modification and Bioactivity Improvement of 3Y-TZP Substrate by Spray Coating of Hydroxyapatite/Fosterite Composite Powder

하이드록시아파타이트/포스터라이트 복합분말의 분사코팅에 의한 3Y-TZP 기판의 표면개질과 생체활성 증진

  • Yu Hyeon Yun (Department of Materials Science and Engineering, Chosun University) ;
  • Jong Kook Lee (Department of Materials Science and Engineering, Chosun University)
  • 윤유현 (조선대학교 신소재공학과) ;
  • 이종국 (조선대학교 신소재공학과)
  • Received : 2023.06.05
  • Accepted : 2023.08.20
  • Published : 2023.08.27

Abstract

3Y-TZP (3 mol% yttria-stabilized tetragonal zirconia polycrystals) ceramics have excellent mechanical properties including high fracture toughness, good abrasion resistance as well as chemical and biological stability. As a result, they are widely used in mechanical and medical components such as bearings, grinding balls, and hip implants. In addition, they provide excellent light transmittance, biocompatibility, and can match tooth color when used as a dental implant. Recently, given the materials' resemblance to human teeth, these ceramics have emerged as an alternative to titanium implants. Since the introduction of CAD/CAM in the manufacture of ceramic implants, they've been increasingly used for prosthetic restoration where aesthetics and strength are required. In this study, to improve the surface roughness of zirconia implants, we modified the 3Y-TZP surface with a biocomposite of hydroxyapatite and forsterite using room temperature spray coating methods, and investigated the mixed effect of the two powders on the evolution of surface microstructure, i.e., coating thickness and roughness, and biological interaction during the in vitro test in SBF solution. We compared improvement in bioactivity by observing dissolution and re-precipitation on the specimen surface. From the results of in vitro testing in SBF solution, we confirmed improvement in the bioactivity of the 3Y-TZP substrate after surface modification with a biocomposite of hydroxyapatite and forsterite. Surface dissolution of the coating layer and the precipitation of new hydroxyapatite particles was observed on the modified surface, indicating the improvement in bioactivity of the zirconia substrate.

Keywords

Acknowledgement

This work was supported by the Chosun University Research Fund, 2022.

References

  1. I. Denry and J. R. Kelly, Dent. Mater., 24, 299 (2008). https://doi.org/10.1016/j.dental.2007.05.007
  2. S. Zinelis, A. Thomas, K. Syres, N. Silikasand and G. Eliades, Dent. Mater., 26, 295 (2010).
  3. L. Rimondini, L. Cerroni, A. Carrassi and P. Torricelli, Int. J. Oral. Maxillofac. Implants., 17, 793 (2002).
  4. J. Chevalier and L. Gremillard, J. Eur. Ceram. Soc., 29, 1245 (2009).
  5. M. Andreiotelli, H. J. Wenz and R. J. Kohal, Clin. Oral Implants Res., 20, 32 (2009).
  6. A. B. Carr, P. E. Larsen, E. Papazoglou and E. McGlumphy, Int. J. Oral Maxillofac. Implants, 10, 60 (1995).
  7. F. H. Schunemann, M. E. Galarraga-Vinueza, R. Magini, M. Fredel, F. Silva, J. C. M. Souza and Y. B. Henriques, Mater. Sci. Eng., C, 98, 1294 (2019).
  8. Y. Zhang and B. Lawn, J. Biomed. Mater. Res., Part B, 72B, 388 (2005).
  9. R. Mai, C. Kunert-Keil, A. Grafe, T. Gedrange, G. Lauer, M. Dominiak and T. Gredes, Ann. Anat., 194, 561 (2012).
  10. P. Gehrke, D. Johannson, C. Fischer, B. Stawarczyk and F. Beuer, Int. J. Oral. Maxillofac. Implants., 30, 546 (2015).
  11. G. Soon, B. Pingguan-Murphy, K. W. Lai and S. A. Akbar, Ceram. Int., 42, 12543 (2016).
  12. D. Faria, B. Henriques, A. C. Souza, F. S. Silva and O. Carvalho, J. Mech. Behav. Biomed. Mater., 112, 1040 (2020).
  13. J. M. Sobral, S. G. Caridade, R. A. Sousa, J. F. Mano and R. L. Reis, Acta Biomater., 7, 1009 (2011).
  14. M. Hirota, T. Hayakawa, C. Ohkubo, M. Sato, H. Hara, T. Toyama and Y. Tanaka, J. Biomed. Mater. Res., Part B, 102B, 1277 (2014).
  15. H. Kim, Y. H. Lee, N. K. Kim and I. K. Kang, Coatings, 12, 1335 (2022).
  16. Z. Ozkurt and E. Kazazoglu, J. Oral Implantol., 37, 367 (2011).
  17. M. Yoshinari, Dent. Mater. J., 39, 37 (2020).
  18. M. Inokoshi, K. Vanmeensel, F. Zhang, J. De Munck, G. Eliades, S. Minakuchi, I. Naert, B. Van Meerbeek and J. Vleugels, Dent. Mater., 31, 182 (2015).
  19. K. Pardun, L. Treccani, E. Volkmann, P. Streckbein, C. Heiss, G. L. Destri, G. Marletta and K. Rezwan, Mater. Sci. Eng., C, 48, 337 (2015).
  20. M. Hirano, Y. Yokoiwa, S. Komai and N. Ohtsu, Appl. Surf. Sci., 478, 567 (2019).
  21. R. Sultana, J. Yang and X. Hu, J. Am. Ceram. Soc., 95, 1212 (2012).
  22. Y. T. Liu, T. M. Lee and T. S. Lui, Colloids Surf., B, 106, 37 (2013).
  23. Y. Li, X. Zhang and K. D. Groot, Biomaterials, 18, 737 (1997).
  24. L. C. Chow, Dent. Mater. J., 28, 1 (2009).
  25. X. Liu, M. Morra, A. Carpi and B. Li, Biomed. Pharmacother., 62, 526 (2008). https://doi.org/10.1016/j.biopha.2008.07.051
  26. P. Srinath, P. A. Azeem and K. V. Reddy, Int. J. Appl. Ceram. Technol., 17, 2450 (2020).
  27. A. Doostmohammadi, Z. K. Esfahani, A. Ardeshirylajimi and Z. R. Dehkordi, Int. J. Appl. Ceram. Technol., 16, 431 (2019).
  28. J. Akedo, J. Ceram. Soc. Jpn., 128, 101 (2020).
  29. V. V. Shumkova, V. M. Pogrebenkov, A. V. Karlov, V. V. Kozik and V. I. Vereshchagin, Glass Ceram., 57, 350 (2000).
  30. M. A. Encinas-Romero, J. Peralta-Haley, J. L. Valenzuela-Garcia and F. F. Castillon-Barraza, J. Biomater. Nanobiotechnol., 4, 327 (2013).
  31. J. J. Kim and J. K. Lee, J. Nanosci. Nanotechnol., 21, 4151 (2021).
  32. Y. H. Yun and J. K. Lee, J. Korean Ceram. Soc., 59, 393 (2022).