DOI QR코드

DOI QR Code

A Study on the Method of Manufacturing Lactic Acid from Ginkgo Biloba Leaf Extraction Byproducts

은행잎 추출부산물로부터의 Lactic acid 제조법에 관한 연구

  • Received : 2023.04.04
  • Accepted : 2023.05.15
  • Published : 2023.08.31

Abstract

Despite the easing of social distancing, demand for non-face-to-face services continues to rise. Recently, the EU is pursuing a comprehensive plastic use reduction by expanding the scope of plastic use regulations for packaging plastics according to the New Cyclical Economy Action Plan(NCEAP). In response to this trend, the packaging industry is moving away from conventional non-degradable/petroleum-based plastics and conducting research on packaging materials using biodegradable plastics such as PLA(Poly Lactic Acid), PBAT(Poly Butylene Adipate-co-butylene Terephthalate). On the other hand, ginkgo leaves occur in large quantities in Korea and act as a cause of slip accidents and flooding. In this study, a method to utilize ginkgo biloba leaf as a new alternative biomass resource was proposed by producing lactic acid through pretreatment, enzymatic saccharification, and fermentation processes. For the efficiency of lactic acid production, a comparative analysis of lignin content from before and after browning was performed. In addition, the degree of glucan extraction was evaluated by applying a pretreatment method using three catalysts: hot water, sulfuric acid, and sodium hydroxide. It is difficult to expect high production of lactic acid with single process. Therefore, an integrated process operation using both the pretreated hydrolyzate and the residual solid enzymatic saccharification solution must necessarily be applied.

실내마스크 착용 해제 및 거리 두기 완화에도 불구하고 비대면 서비스가 계속되어 이루어지고 있다. 특히 음·식료품을 비롯한 농·축·수산물의 배송 수요는 증가하고 있어 이에 부가되는 플라스틱 포장 폐기물의 양이 꾸준히 증가하는 추세이다. 이에 따라 EU에서는 포장재 플라스틱의 사용을 규제하려는 방향으로 움직임을 보였다. 이러한 국제 트렌드의 흐름에 대응하여 국내 패키징 업계에서는 PLA, PBAT와 같은 생분해성 물질을 이용한 친환경 포장재 개발 연구를 활발히 진행하고 있다. 본 연구에서는 이러한 이슈에 대응하여 국내 가로수 중 상당 비중을 차지하여 식재된 은행나무의 은행잎을 lactic acid 생산에 관한 새로운 원료로 활용하고자 하였다. 은행잎은 cellulose, mannan, xylan 등의 다당류를 함유하고 있으며 대량의 원료를 얻을 수 있다는 유용한 특징이 있다. 본 연구를 통해 전처리한 은행추출부산물의 glucan은 단일 분획 공정으로는 높은 수율을 기대하기 어렵다고 판단되어지며, 낮은 수욜 문제를 해결하기 위해서는 전처리 가수분해액, 효소당화액을 모두 활용하는 통합 공정이 필수적으로 적용되어야 한다.

Keywords

Acknowledgement

본 논문은 농업기술진흥원 2022년 농식품 벤처육성 지원에 의해 이루어진 것임.

References

  1. Kim, S.Y. and Kim, K.N. 2023. Online shopping trend in December 2022. Statistics Korea (KOSTAT), Daejeon, Korea, pp. 1-6.
  2. Korea Integrated Logistics Association(KILA). 2020. The trend of volume and number of uses in the domestic parcel delivery market. National logistics information Center (NLIC), Sejong, Korea.
  3. Korea Resource Recirculation Information System(KRRIS). 2022. Waste generation and disposal status nationwide. 11-1480000-001552-10. Ministry of Environment, Incheon, Korea.
  4. Shen, L., Haufe, J. and Patel, M.K. 2009. Product overview and market projection of emerging bio-based plastics. PROBIP 2009. Copernic Institute for Sustainable Development and Innovation - Utrecht University. Netherlands. pp. 7-8.
  5. Yu, J.Y. 2022. Moves to tighten regulations on packaging plastics in EU. Korea Trade Investment Promotion Agency (KOTRA), Seoul, Korea.
  6. Nabavi, S.M., & Silva, A.S.(eds). 2019. Nonvitamin and nonmineral nutritional supplements. Academic Press, London, UK, pp. 241-250.
  7. Lee, I.H., Shim, Y., Choi, S.H., Park, J.Y., Han, S.W., Song, J.Y., and Yoon, S.J. 2006. A study on the antimicrobial effect of Ginkgo biloba leaves Extracts according to Concentrations of Ethanol for staphylococcus aureus. KSBB Journal. 21(4): 312-316.
  8. Seo, D.M., Park, C.W., Oh, S., and Won, D.Y. Resurrection of fallen leaves safety threats. http://www.safetimes.co.kr/news/articleView.html?idxno=103990
  9. European Bioplastics and nova-institute. 2022. Global production capacities of bioplastics. European Bioplastics, Berlin, Germany.
  10. Liu, S.Q. 2003. Practical implications of lactate and pyruvate metabolism by lactic acid bacteria in food and beverage fermentations. Int J. Food Microbiol. 83(2): 115-131. https://doi.org/10.1016/S0168-1605(02)00366-5
  11. Won, E.M. 2021. Parks & Recreation Bureau of Seoul Metropolitan Government. 2021. Seoul Metropolitan Government, Seoul, Korea.
  12. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., and Sluiter, J., Templeton, D. and Crocker, D. 2008. Determination of Structural Carbohy-drates and Lignin in Biomass[electronic resource]. Laboratory Analytical Procedure (LAP), Colorado, U.S.
  13. Sluiter A., Ruiz, R., Scarlata, C., Sluiter, J. and Templeton. D. 2005. Determination of extractives in Biomass. Laboratory Analytical Procedure (LAP), Colorado, U.S.
  14. Selig, M., Weiss, N. and Ji, Y. 2008. Enzymatic Saccharification of Lignocellulosic Biomass. Laboratory Analytical Procedure(LAP). CO: National Renewable Energy Laboratory. Colorado, U.S.
  15. Chen, F. and Dixon, R. 2007. Lignin modification improves fermentable sugar yields for biofuel production. Nature Biotechnol. 25: 759-761. https://doi.org/10.1038/nbt1316
  16. Bonawitz, N.D., Kim, J.I., Tobimatsu, Y., Ciesielski, P.N., Anderson, N.A., Ximenes, E., Maeda, J., Ralph J., Donohoe, B.S., Ladisch, M., and Chapple, C. 2014. Disruption of mediator rescues the stunted growth of a lignin-deficient Arabidopsis mutant, Nature. 509(7500): 376-380. https://doi.org/10.1038/nature13084