Acknowledgement
본 논문은 한국도로공사에서 발주한 "2030 고속도로 환경을 고려한 교통정보 수집체계 진단 및 발전방안 수립 연구"의 일환으로 작성되었습니다.
References
- Baek, S. K.(2017), "Future Highway Prospects and Road Infrastructure Policy Direction", The Korea Spatial Planning Review, vol. 428, pp.15-19.
- Baek, S. K., Oh, C. S., Kang, J. G. and Nam, D. H.(2005a), "Assessments of freeway incidents management systems", Journal of the Korean Society of Civil Engineers, pp.4075-4078.
- Baek, S. K., Oh, C. S., Kang, J. G. and Nam, D. H.(2005b), "A guideline for freeway incident management manual", The Journal of The Korea Institute of Intelligent Transport Systems, vol. 4, no. 3, pp.61-72.
- Elhassouny, A. and Smarandache, F.(2019), "Trends in deep convolutional neural Networks architectures: A review", 2019 International Conference of Computer Science and Renewable Energies(ICCSRE), pp.1-8.
- He, K., Zhang, X., Ren, S. and Sun, J.(2016), "Deep residual learning for image recognition", Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.770-778.
- Kang, Y. S.(2009), "ITS/Telematics", Communications of the Korean Institute of Information Scientists and Engineers, vol. 27 no. 9, pp.10-17.
- Ki, Y. K. and Kim, Y. H.(2020), "A travel speed prediction model for incident detection based on traffic CCTV", Journal of Industrial Convergence, vol. 18, no. 3, pp.53-61. https://doi.org/10.22678/JIC.2020.18.3.053
- Kim, B. J., Yim, J. H. and Kim, J. M.(2020), Highway driving dataset for semantic video segmentation, arXiv preprint arXiv:2011.00674.
- Kim, D. H.(2005), "Automatic Incident Detection Using Machine Learning", Seoul Studies, vol. 6, no. 1, pp.71-80. https://doi.org/10.23129/SEOULS.6.1.200503.71
- Lee, K. Y., Seo, I. K., Park, M. S. and Jang, M. S.(2012), "A Study on the Influencing Factors for Incident Duration Time by Expressway Accident", International Journal of Highway Engineering, vol. 14, no. 1, pp.85-94.
- Narayanan, A., Dwivedi, I. and Dariush, B.(2019), "Dynamic traffic scene classification with space-time coherence", 2019 International Conference on Robotics and Automation(ICRA), pp.5629-5635.
- Ozdamar, L., Aksu, D. T. and Ergunes, B.(2014), "Coordinating debris cleanup operations in post disaster road networks", Socio-Economic Planning Sciences, vol. 48, no. 4, pp.249-262. https://doi.org/10.1016/j.seps.2014.08.001
- Phung, V. H. and Rhee, E. J.(2019), "A high-accuracy model average ensemble of convolutional neural networks for classification of cloud image patches on small datasets", Applied Sciences, vol. 9, no. 21, p.4500.
- Prykhodchenko, R. and Skruch, P.(2022), "Road scene classification based on street-level images and spatial data", Array, vol. 15, p.100195.
- Sihag, G., Parida, M. and Kumar, P.(2022), "Travel Time Prediction for Traveler Information System in Heterogeneous Disordered Traffic Conditions Using GPS Trajectories", Sustainability, vol. 14, no. 16, p.10070.
- Society Automotive Engineers International, ITIS Phrase Lists (International Traveler Information Systems), https://www.sae.org/standards/content/j2540/2_202012, 2023.01.15.
- Westell, J.(2019), Multi-Task Learning using Road Surface Condition Classification and Road Scene Semantic Segmentation, Master's Thesis, Linkoping University. https://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-157403, 2023.02.21.
- Wu, F., Yan, S., Smith, J. S. and Zhang, B.(2021), "Deep multiple classifier fusion for traffic scene recognition", Granular Computing, vol. 6, pp.217-228. https://doi.org/10.1007/s41066-019-00182-6
- Yao, J., Fidler, S. and Urtasun, R.(2012), "Describing the scene as a whole: Joint object detection, scene classification and semantic segmentation", 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp.702-709.
- Zeng, D., Liao, M., Tavakolian, M., Guo, Y., Zhou, B., Hu, D., Pietikainen, M. and Liu, L.(2021), Deep learning for scene classification: A survey, arXiv preprint arXiv:2101.10531.