• Title/Summary/Keyword: Scene classification

Search Result 116, Processing Time 0.027 seconds

Classification of TV Program Scenes Based on Audio Information

  • Lee, Kang-Kyu;Yoon, Won-Jung;Park, Kyu-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.3E
    • /
    • pp.91-97
    • /
    • 2004
  • In this paper, we propose a classification system of TV program scenes based on audio information. The system classifies the video scene into six categories of commercials, basketball games, football games, news reports, weather forecasts and music videos. Two type of audio feature set are extracted from each audio frame-timbral features and coefficient domain features which result in 58-dimensional feature vector. In order to reduce the computational complexity of the system, 58-dimensional feature set is further optimized to yield l0-dimensional features through Sequential Forward Selection (SFS) method. This down-sized feature set is finally used to train and classify the given TV program scenes using κ -NN, Gaussian pattern matching algorithm. The classification result of 91.6% reported here shows the promising performance of the video scene classification based on the audio information. Finally, the system stability problem corresponding to different query length is investigated.

Change Detection in Land-Cover Pattern Using Region Growing Segmentation and Fuzzy Classification

  • Lee Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.1
    • /
    • pp.83-89
    • /
    • 2005
  • This study utilized a spatial region growing segmentation and a classification using fuzzy membership vectors to detect the changes in the images observed at different dates. Consider two co-registered images of the same scene, and one image is supposed to have the class map of the scene at the observation time. The method performs the unsupervised segmentation and the fuzzy classification for the other image, and then detects the changes in the scene by examining the changes in the fuzzy membership vectors of the segmented regions in the classification procedure. The algorithm was evaluated with simulated images and then applied to a real scene of the Korean Peninsula using the KOMPSAT-l EOC images. In the expertments, the proposed method showed a great performance for detecting changes in land-cover.

Image Scene Classification of Multiclass (다중 클래스의 이미지 장면 분류)

  • Shin, Seong-Yoon;Lee, Hyun-Chang;Shin, Kwang-Seong;Kim, Hyung-Jin;Lee, Jae-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.551-552
    • /
    • 2021
  • In this paper, we present a multi-class image scene classification method based on transformation learning. ImageNet classifies multiple classes of natural scene images by relying on pre-trained network models on large image datasets. In the experiment, we obtained excellent results by classifying the optimized ResNet model on Kaggle's Intel Image Classification data set.

  • PDF

Indoor Scene Classification based on Color and Depth Images for Automated Reverberation Sound Editing (자동 잔향 편집을 위한 컬러 및 깊이 정보 기반 실내 장면 분류)

  • Jeong, Min-Heuk;Yu, Yong-Hyun;Park, Sung-Jun;Hwang, Seung-Jun;Baek, Joong-Hwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.3
    • /
    • pp.384-390
    • /
    • 2020
  • The reverberation effect on the sound when producing movies or VR contents is a very important factor in the realism and liveliness. The reverberation time depending the space is recommended in a standard called RT60(Reverberation Time 60 dB). In this paper, we propose a scene recognition technique for automatic reverberation editing. To this end, we devised a classification model that independently trains color images and predicted depth images in the same model. Indoor scene classification is limited only by training color information because of the similarity of internal structure. Deep learning based depth information extraction technology is used to use spatial depth information. Based on RT60, 10 scene classes were constructed and model training and evaluation were conducted. Finally, the proposed SCR + DNet (Scene Classification for Reverb + Depth Net) classifier achieves higher performance than conventional CNN classifiers with 92.4% accuracy.

Hypergraph model based Scene Image Classification Method (하이퍼그래프 모델 기반의 장면 이미지 분류 기법)

  • Choi, Sun-Wook;Lee, Chong Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.166-172
    • /
    • 2014
  • Image classification is an important problem in computer vision. However, it is a very challenging problem due to the variability, ambiguity and scale change that exists in images. In this paper, we propose a method of a hypergraph based modeling can consider the higher-order relationships of semantic attributes of a scene image and apply it to a scene image classification. In order to generate the hypergraph optimized for specific scene category, we propose a novel search method based on a probabilistic subspace method and also propose a method to aggregate the expression values of the member semantic attributes that belongs to the searched subsets based on a linear transformation method via likelihood based estimation. To verify the superiority of the proposed method, we showed that the discrimination power of the feature vector generated by the proposed method is better than existing methods through experiments. And also, in a scene classification experiment, the proposed method shows a competitive classification performance compared with the conventional methods.

Application of Bitemporal Classification Technique for Accuracy Improvement of Remotely Sensed Data (원격탐사 데이타의 정확도 향상을 위한 Bitemporal Classification 기법의 적용)

  • 안철호;안기원;윤상호;박민호
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.5 no.2
    • /
    • pp.24-33
    • /
    • 1987
  • This study aims at obtaining more effective image processing techniques and more accurately classified image in the sphere which uses remotely sensed data. For this practice, the result of land use classification compounding summer scene with winter scene and the classified result of summer scene were compared, analyzed. From the upper analysed results, we found that Bitemporal Classification technique and $tan^{-1}$transformation were effective. Particularly, dividing crop class into two classes of farmland and field was more possible by appling Bitemporal Classification technique.

  • PDF

A Remote Sensing Scene Classification Model Based on EfficientNetV2L Deep Neural Networks

  • Aljabri, Atif A.;Alshanqiti, Abdullah;Alkhodre, Ahmad B.;Alzahem, Ayyub;Hagag, Ahmed
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.406-412
    • /
    • 2022
  • Scene classification of very high-resolution (VHR) imagery can attribute semantics to land cover in a variety of domains. Real-world application requirements have not been addressed by conventional techniques for remote sensing image classification. Recent research has demonstrated that deep convolutional neural networks (CNNs) are effective at extracting features due to their strong feature extraction capabilities. In order to improve classification performance, these approaches rely primarily on semantic information. Since the abstract and global semantic information makes it difficult for the network to correctly classify scene images with similar structures and high interclass similarity, it achieves a low classification accuracy. We propose a VHR remote sensing image classification model that uses extracts the global feature from the original VHR image using an EfficientNet-V2L CNN pre-trained to detect similar classes. The image is then classified using a multilayer perceptron (MLP). This method was evaluated using two benchmark remote sensing datasets: the 21-class UC Merced, and the 38-class PatternNet. As compared to other state-of-the-art models, the proposed model significantly improves performance.

Land Cover Classification of a Wide Area through Multi-Scene Landsat Processing (다량의 Landsat 위성영상 처리를 통한 광역 토지피복분류)

  • 박성미;임정호;사공호상
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.3
    • /
    • pp.189-197
    • /
    • 2001
  • Generally, remote sensing is useful to obtain the quantitative and qualitative information of a wide area. For monitoring earth resources and environment, land cover classification of remotely sensed data are needed over increasingly larger area. The objective this study is to propose the process for land cover classification method over a wide area using multi-scene satellite data. Land cover of Korean peninsula was extracted from a Landsat TM and ETM+ mosaic created from 23 scenes at 100-meter resolution. Well-known techniques that used to general image processing and classification are applied to this wide area classification. It is expected that these process is very useful to promptly and efficiently grasp of small scale spatial information such as national territorial information.

Adaptive Scene Classification based on Semantic Concepts and Edge Detection (시멘틱개념과 에지탐지 기반의 적응형 이미지 분류기법)

  • Jamil, Nuraini;Ahmed, Shohel;Kim, Kang-Seok;Kang, Sang-Jil
    • Journal of Intelligence and Information Systems
    • /
    • v.15 no.2
    • /
    • pp.1-13
    • /
    • 2009
  • Scene classification and concept-based procedures have been the great interest for image categorization applications for large database. Knowing the category to which scene belongs, we can filter out uninterested images when we try to search a specific scene category such as beach, mountain, forest and field from database. In this paper, we propose an adaptive segmentation method for real-world natural scene classification based on a semantic modeling. Semantic modeling stands for the classification of sub-regions into semantic concepts such as grass, water and sky. Our adaptive segmentation method utilizes the edge detection to split an image into sub-regions. Frequency of occurrences of these semantic concepts represents the information of the image and classifies it to the scene categories. K-Nearest Neighbor (k-NN) algorithm is also applied as a classifier. The empirical results demonstrate that the proposed adaptive segmentation method outperforms the Vogel and Schiele's method in terms of accuracy.

  • PDF

A Novel Two-Stage Training Method for Unbiased Scene Graph Generation via Distribution Alignment

  • Dongdong Jia;Meili Zhou;Wei WEI;Dong Wang;Zongwen Bai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.12
    • /
    • pp.3383-3397
    • /
    • 2023
  • Scene graphs serve as semantic abstractions of images and play a crucial role in enhancing visual comprehension and reasoning. However, the performance of Scene Graph Generation is often compromised when working with biased data in real-world situations. While many existing systems focus on a single stage of learning for both feature extraction and classification, some employ Class-Balancing strategies, such as Re-weighting, Data Resampling, and Transfer Learning from head to tail. In this paper, we propose a novel approach that decouples the feature extraction and classification phases of the scene graph generation process. For feature extraction, we leverage a transformer-based architecture and design an adaptive calibration function specifically for predicate classification. This function enables us to dynamically adjust the classification scores for each predicate category. Additionally, we introduce a Distribution Alignment technique that effectively balances the class distribution after the feature extraction phase reaches a stable state, thereby facilitating the retraining of the classification head. Importantly, our Distribution Alignment strategy is model-independent and does not require additional supervision, making it applicable to a wide range of SGG models. Using the scene graph diagnostic toolkit on Visual Genome and several popular models, we achieved significant improvements over the previous state-of-the-art methods with our model. Compared to the TDE model, our model improved mR@100 by 70.5% for PredCls, by 84.0% for SGCls, and by 97.6% for SGDet tasks.