DOI QR코드

DOI QR Code

Enhancing Electrical and Optical Properties in Mechanoluminescent Flexible Nanocomposite Based on ZnS:Cu-PDMS by Mixing CNTs

ZnS:Cu-PDMS 기반 기계 발광 유연 나노 복합체의 CNT 혼입에 따른 전기 및 광학적 특성 향상에 대한 연구

  • Tae-Min Kim (Department of Nano & Semiconductor Engineering, Tech University of Korea) ;
  • Hyun-Woo Kim (Department of Nano & Semiconductor Engineering, Tech University of Korea) ;
  • Jong-Hyeok Yoon (Department of Nano & Semiconductor Engineering, Tech University of Korea) ;
  • Mi-Hee Kim (Department of Nano & Semiconductor Engineering, Tech University of Korea) ;
  • Da-Bin Jeon (Department of Nano & Semiconductor Engineering, Tech University of Korea) ;
  • Dae-Choul Choi (Department of IT Semiconductor Convergence Engineering, Tech University of Korea) ;
  • Sung-Nam Lee (Department of Nano & Semiconductor Engineering, Tech University of Korea)
  • 김태민 ( 한국공학대학교 나노반도체공학과) ;
  • 김현우 ( 한국공학대학교 나노반도체공학과) ;
  • 윤종혁 ( 한국공학대학교 나노반도체공학과) ;
  • 김미희 ( 한국공학대학교 나노반도체공학과) ;
  • 전다빈 ( 한국공학대학교 나노반도체공학과) ;
  • 최대철 ( 한국공학대학교 IT반도체융합공학과) ;
  • 이성남 ( 한국공학대학교 나노반도체공학과)
  • Received : 2023.08.03
  • Accepted : 2023.08.10
  • Published : 2023.09.01

Abstract

Mechanoluminescence (ML) is a phenomenon where the application of mechanical force to ML materials generates an electric field and produces light, holding significant promise as an eco-friendly technology. However, challenges in commercializing ML technology has arisen due to its low brightness and short luminous lifetime. To address this, in this work, we enhance ML efficiency by mixing carbon nanotubes (CNTs) into a ZnS: Cu embedded in a polydimethylsiloxane composite ML device. The inclusion of CNTs boosts ML intensity by 98% compared to devices without CNTs, as the increasing CNT fraction elevates conductivity, thereby amplifying ML intensity. However, this increase in CNT fraction also leads to enhanced light absorption within the device. Consequently, we observe a trend where ML intensity rises initially but declines beyond a CNT fraction of 0.0015 wt%. Based on these findings, we anticipate that our research will make valuable contributions to the advancement of electrical powerless mechanoluminescent technology.

Keywords

Acknowledgement

본 연구는 교육과학기술부 한국연구재단에서 주관하는 중견연구 과제(NRF-2020R1A2C1009630)의 지원으로 수행된 연구 결과입니다.

References

  1. S. M. Jeong, S. Song, S. K. Lee, and N. Y. Ha, Adv. Mater., 25, 6194 (2013). doi: https://doi.org/10.1002/adma.201301679 
  2. H. J. Park, S. M. Kim, J. H. Lee, H. T. Kim, W. Seung, Y. Son, T. Y. Kim, U. Khan, N. M. Park, and S. W. Kim, ACS Appl. Mater. Inter, 11, 5200 (2019). doi: https://doi.org/10.1021/acsami.8b16023 
  3. X. Wang, D. Peng, B. Huang, C. Pan, and Z. L. Wang, Nano Energy, 55, 389 (2019). doi: https://doi.org/10.1016/j.nanoen.2018.11.014 
  4. S. M. Jeong, S. Song, S. K. Lee, and B. Choi, Appl. Phys. Lett., 102, 051110 (2013). doi: https://doi.org/10.1063/1.4791689 
  5. A. Tzalmona, Phys. Lett. A, 26, 65 (1967). doi: https://doi.org/10.1016/0375-9601(67)90102-8 
  6. K. S. Sohn, S. Timilsina, S. P. Singh, T. Choi, and J. S. Kim, APL Mater. 4, 106102 (2016). doi: https://doi.org/10.1063/1.4964139 
  7. G. Alzetta, G. Chella, and S. Santucci, Phys. Lett. A, 26, 94 (1967). doi: https://doi.org/10.1016/0375-9601(67)90119-3 
  8. E. M. Kim and G. S. Heo, J. Korean Inst. Electr. Electron. Mater. Eng., 35, 562 (2022). doi: https://doi.org/10.4313/JKEM.2022.35.6.4 
  9. S. Hajra, S. Panda, S. Song, B. K. Panigrahi, P. Pakawanit, S. M. Jeong, and H. J. Kim, Nano Energy, 114, 108668 (2023). doi: https://doi.org/10.1016/j.nanoen.2023.108668 
  10. S. K. Soni, B. Thomas, and V. R. Kar, Mater. Today Commun., 25, 101546 (2020). doi: https://doi.org/10.1016/j.mtcomm.2020.101546 
  11. P. Jha and B. P. Chandra, Luminescence, 29, 977 (2014). doi: https://doi.org/10.1002/bio.2647 
  12. J.C.G. Bunzli and K. L. Wong, J. Rare Earths, 36, 1 (2018). doi: https://doi.org/10.1016/j.jre.2017.09.005 
  13. D. Ryu and N. Castano, IEEE Sens. Lett., 2, 1501104 (2018). doi: https://doi.org/10.1109/LSENS.2018.2838019 
  14. Y. Zuo, X. Xu, X. Tao, X. Shi, X. Zhou, Z. Gao, X. Sun, and H. Peng, J. Mater. Chem. C, 7, 4020 (2019). doi: https://doi.org/10.1039/c9tc00641a 
  15. A. Mongare and D. Ryu, Proc. ASME 2021 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (American Society of Mechanical Engineers, Zoom, 2021). doi: https://doi.org/10.1115/SMASIS2021-68397 
  16. P. K. Shon, J. H. Shin, J. M. Bea, J. B. Lee, J. S. Kim, and S. N. Lee, J. Korean Inst. Printing, 29, 23 (2011). UCI: G704-SER000009625.2011.29.1.008 
  17. A. Feng and P. F. Smet, Materials, 11, 484 (2018). doi: https://doi.org/10.3390/ma11040484 
  18. T. Zhou, Y. Zhao, H. Chen, X. Du, W. Chen, Z. Dong, X. Wang, J. Shen, Z. Wu, W. Liu, and Y. Zhang, Mater. Des., 224, 111407 (2022). doi: https://doi.org/10.1016/j.matdes.2022.111407