DOI QR코드

DOI QR Code

Growth Behavior of Heteroepitaxial β-Ga2O3 Thin Films According to the Sapphire Substrate Position in the Hot Zone of the Mist Chemical Vapor Deposition System

미스트화학기상증착 시스템의 Hot Zone 내 사파이어 기판 위치에 따른 β-Ga2O3 이종 박막 성장 거동 연구

  • Kyoung-Ho Kim (Semiconductor Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Heesoo Lee (Department of Materials Engineering, Pusan National University) ;
  • Yun-Ji Shin (Semiconductor Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Seong-Min Jeong (Semiconductor Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Si-Young Bae (Semiconductor Materials Center, Korea Institute of Ceramic Engineering and Technology)
  • 김경호 (한국세라믹기술원 반도체소재센터) ;
  • 이희수 (부산대학교 재료공학과) ;
  • 신윤지 (한국세라믹기술원 반도체소재센터) ;
  • 정성민 (한국세라믹기술원 반도체소재센터) ;
  • 배시영 (한국세라믹기술원 반도체소재센터)
  • Received : 2023.08.11
  • Accepted : 2023.08.23
  • Published : 2023.09.01

Abstract

In this study, the heteroepitaxial thin film growth of β-Ga2O3 was studied according to the position of the susceptor in mist-CVD. The position of the susceptor and substrate was moved step by step from the center of the hot zone to the inlet of mist in the range of 0~50 mm. It was confirmed that the average thickness increased to 292 nm (D1), 521 nm (D2), and 580 nm (D3) as the position of the susceptor moved away from the center of the hot zone region. The thickness of the lower region of the substrate is increased compared to the upper region. The surface roughness of the lower region of the substrate also increased because the nucleation density increased due to the increase in the lifetime of the mist droplets and the increased mist density. Therefore, thin film growth of β-Ga2O3 in mist-CVD is performed by appropriately adjusting the position of the susceptor (or substrate) in consideration of the mist velocity, evaporation amount, and temperature difference with the substrate, thereby determining the crystallinity of the thin film, the thickness distribution, and the thickness of the thin film. Therefore, these results can provide insights for optimizing the mist-CVD process and producing high-quality β-Ga2O3 thin films for various optical and electronic applications.

Keywords

Acknowledgement

본 연구는 세라믹전략기술개발사업(KPP23004)의 지원을 받아 수행되었습니다.

References

  1. S. J. Pearton, J. Yang, P. H. Cary, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, Appl. Phys. Rev., 5, 011301 (2018). doi: https://doi.org/10.1063/1.5006941
  2. H. H. Tippins, Phys. Rev., 140, A316 (1965). doi: https://doi.org/10.1103/PhysRev.140.A316
  3. M. A. Mastro, A. Kuramata, J. Calkins, J. Kim, F. Ren, and S. J. Pearton, ECS J. Solid State Sci. Technol., 6, P356 (2017). doi: https://doi.org/10.1149/2.0031707jss
  4. M. Ogita, N. Saika, Y. Nakanishi, and Y. Hatanaka, Appl. Surf. Sci., 142, 188 (1999). doi: https://doi.org/10.1016/S0169-4332(98)00714-4
  5. M. Fleischer and H. Meixner, Sens. Actuators, B, 13, 259 (1993). doi: https://doi.org/10.1016/0925-4005(93)85376-l
  6. R. Roy, V. G. Hill, and E. F. Osborn, J. Am. Chem. Soc., 74, 719 (1952). doi: https://doi.org/10.1021/ja01123a039
  7. A. T. Neal, S. Mou, R. Lopez, J. V. Li, D. B. Thomson, K. D. Chabak, and G. H. Jessen, Sci. Rep., 7, 13218 (2017). doi: https://doi.org/10.1038/s41598-017-13656-x
  8. M. Higashiwaki, K. Sasaki, H. Murakami, Y. Kumagai, A. Koukitu, A. Kuramata, T. Masui, and S. Yamakoshi, Semicond. Sci. Technol., 31, 034001 (2016). doi: https://doi.org/10.1088/0268-1242/31/3/034001
  9. A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, and S. Yamakoshi, Jpn. J. Appl. Phys., 55, 1202A2 (2016). doi: https://doi.org/10.7567/jjap.55.1202a2
  10. T. Oshima, T. Okuno, N. Arai, Y. Kobayashi, and S. Fujita, Jpn. J. Appl. Phys., 48, 070202 (2009). doi: https://doi.org/10.1143/jjap.48.070202
  11. Y. Zhang, F. Alema, A. Mauze, O. S. Koksaldi, R. Miller, A. Osinsky, and J. S. Speck, APL Mater., 7, 022506 (2019). doi: https://doi.org/10.1063/1.5058059
  12. T. Oshima, T. Okuno, and S. Fujita, Jpn. J. Appl. Phys., 46, 7217 (2007). doi: https://doi.org/10.1143/jjap.46.7217
  13. K. H. Kim, M. T. Ha, Y. J. Kwon, H. Lee, S. M. Jeong, and S. Y. Bae, ECS J. Solid State Sci. Technol., 8, Q3165 (2019). doi: https://doi.org/10.1149/2.0301907jss
  14. M. T. Ha, K. H. Kim, Y. J. Kwon, C. J. Kim, S. M. Jeong, and S. Y. Bae, ECS J. Solid State Sci. Technol., 8, Q3206 (2019). doi: https://doi.org/10.1149/2.0381907jss
  15. A. K. Mondal, R. Deivasigamani, L. K. Ping, M.A.S.M. Haniff, B. T. Goh, R. H. Horng, and M. A. Mohamed, ACS Omega, 7, 41236 (2022). doi: https://doi.org/10.1021/acsomega.2c04888
  16. Y. Cheng, C. Zhang, Y. Xu, Z. Li, D. Chen, W. Zhu, Q. Feng, S. Xu, J. Zhang, and Y. Hao, Mater. Today Commun., 29, 102766 (2021). doi: https://doi.org/10.1016/j.mtcomm.2021.102766
  17. M. T. Ha, K. H. Kim, Y. J. Shin, S. M. Jeong, and S. Y. Bae, Adv. Mater. Interfaces, 8, 2001895 (2021). doi: https://doi.org/10.1002/admi.202001895