DOI QR코드

DOI QR Code

Electrochemical Determination of Chemical Oxygen Demand Based on Boron-Doped Diamond Electrode

  • Dian S. Latifah (Department of Applied Chemistry (Department of Energy Convergence Engineering) Kumoh National Institute of Technology) ;
  • Subin Jeon (Department of Applied Chemistry (Department of Energy Convergence Engineering) Kumoh National Institute of Technology) ;
  • Ilwhan Oh (Department of Applied Chemistry (Department of Energy Convergence Engineering) Kumoh National Institute of Technology)
  • 투고 : 2023.01.05
  • 심사 : 2023.02.02
  • 발행 : 2023.08.31

초록

A rapid and environment-friendly electrochemical sensor to determine the chemical oxygen demand (COD) has been developed. The boron-doped diamond (BDD) thin-film electrode is employed as the anode, which fully oxidizes organic pollutants and provides a current response in proportion to the COD values of the sample solution. The BDD-based amperometric COD sensor is optimized in terms of the applied potential and the solution pH. At the optimized conditions, the COD sensor exhibits a linear range of 0 to 80 mg/L and the detection limit of 1.1 mg/L. Using a set of model organic compounds, the electrochemical COD sensor is compared with the conventional dichromate COD method. The result shows an excellent correlation between the two methods.

키워드

과제정보

This research was supported by the academic research fund from the Kumoh National Institute of Technology (2019104143).

참고문헌

  1. J. Yang, J. Chen, Y. Zhou, and K. Wu, Sens. Actuators B, 2011, 153(1), 78-82. https://doi.org/10.1016/j.snb.2010.10.015
  2. Y. Choi, M. S. Koo, A. D. Bokare, D. Kim, D. W. Bahnemann, and W. Choi, Environ. Sci. Technol., 2017, 51(7), 3973-3981. https://doi.org/10.1021/acs.est.6b06303
  3. L. Liang, J. Yin, J. Bao, L. Cong, W. Huang, H. Lin, and Z. Shi, Chin. Chem. Lett., 2019, 30(1), 167-170. https://doi.org/10.1016/j.cclet.2018.01.049
  4. J. Hejzlar and J. Kopacek, Analyst, 1990, 115, 1463-1467. https://doi.org/10.1039/AN9901501463
  5. A. Lloyd, Analyst, 1982, 107, 1316-1319. https://doi.org/10.1039/an9820701316
  6. S. W. da Silva, J. M. do Prado, A. N. A. Heberle, D. E. Schneider, M. A. S. Rodrigues, and A. M. Bernardes, J. Electroanal. Chem., 2019, 844, 27-33. https://doi.org/10.1016/j.jelechem.2019.05.011
  7. D. Bejan, E. Guinea, and N. J. Bunce, Electrochim. Acta, 2012, 69, 275-281. https://doi.org/10.1016/j.electacta.2012.02.097
  8. M. Panizza and G. Cerisola, Chem. Rev., 2009, 109(12), 6541-6569. https://doi.org/10.1021/cr9001319
  9. S. A. Alves, T. C. R. Ferreira, N. S. Sabatini, A. C. A. Trientini, F. L. Migliorini, M. R. Baldan, N. G. Ferreira, and M. R. V. Lanza, Chemosphere, 2012, 88(2), 155-160. https://doi.org/10.1016/j.chemosphere.2012.02.042
  10. J.-F. Zhi, H.-B. Wang, T. Nakashima, T. N. Rao, and A. Fujishima, J. Phys. Chem. B, 2003, 107(48), 13389-13395. https://doi.org/10.1021/jp030279g
  11. F. C. Moreira, R. A. R. Boaventura, E. Brillas, and V. J. P. Vilar, Appl. Catal. B, 2017, 202, 217-261. https://doi.org/10.1016/j.apcatb.2016.08.037
  12. E. Guinea, J. A. Garrido, R. M. Rodriguez, P.-L. Cabot, C. Arias, F. Centellas, and E. Brillas, Electrochim. Acta, 2010, 55(6), 2101-2115. https://doi.org/10.1016/j.electacta.2009.11.040
  13. A. Kapalka, H. Baltruschat, and C. Comninellis, Electrochemical Oxidation of Organic Compounds Induced by Electro-Generated Free Hydroxyl Radicals on BDD Electrodes, in E. Brillas and C. A. Martinez-Huitle (eds.), Synthetic Diamond Films: Preparation, Electrochemistry, Characterization, and Applications, Wiley, 2011, 237-260.
  14. I. Sirs, E. Brillas, M. A. Oturan, M. A. Rodrigo, and M. Panizza, Environ. Sci. Pollut. Res., 2014, 21, 8336-8367. https://doi.org/10.1007/s11356-014-2783-1
  15. A. D. Eaton, L. S. Clesceri, and A. E. Greenberg (eds.), Standard Methods for the Examination of Water and Wastewater, 19th Edition, American Public Health Association, American Water Works Association, Water Environment Federation, Washington, D.C., 1995, 5-12.
  16. M. Gutierrez-Capitan, A. Baldi, R. Gomez, V. Garcia, C. Jimenez-Jorquera, and C. Fernandez-Sanchez, Anal. Chem., 2015, 87(4), 2152-2160. https://doi.org/10.1021/ac503329a
  17. Y. He, H. Lin, Z. Guo, W. Zhang, H. Li, and W. Huang, Sep. Purif. Technol., 2019, 212, 802-821. https://doi.org/10.1016/j.seppur.2018.11.056
  18. M. Panizza, P. A. Michaud, G. Cerisola, and Ch. Comninellis, J. Electroanal. Chem., 2001, 507(1-2), 206-214. https://doi.org/10.1016/S0022-0728(01)00398-9
  19. P. Khwanmuang, P. Rotjanapan, A. Phuphuakrat, S. Srichatrapimuk, and C. Chitichotpanya, React. Funct. Polym., 2017, 117, 120-130. https://doi.org/10.1016/j.reactfunctpolym.2017.06.012
  20. O. Simond, and Ch. Comninellis, Electrochim. Acta, 1997, 42(13-14), 2013-2018. https://doi.org/10.1016/S0013-4686(97)85476-X
  21. L. Gherardini, P. A. Michaud, M. Panizza, Ch. Comninellis, and N. Vatistas, J. Electrochem. Soc., 2001, 148, D78.
  22. E. Brillas, S. Garcia-Segura, M. Skoumal, and C. Arias, Chemosphere, 2010, 79(6), 605-612. https://doi.org/10.1016/j.chemosphere.2010.03.004
  23. P.-A. Michaud, M. Panizza, L. Ouattara, T. Diaco, G. Foti, and Ch. Comninellis, J. Appl. Electrochem., 2003, 33, 151-154. https://doi.org/10.1023/A:1024084924058
  24. J. V. Macpherson, Phys. Chem. Chem. Phys., 2015, 17, 2935-2949. https://doi.org/10.1039/C4CP04022H
  25. Y. V. Pleskov, Y. E. Evstefeeva, V. P. Varnin, and I. G. Teremetskaya, Russ. J. Electrochem., 2004, 40, 886-892. https://doi.org/10.1023/B:RUEL.0000041354.70107.c8
  26. J. Iniesta, P. A. Michaud, M. Panizza, G. Cerisola, A. Aldaz, and Ch. Comninellis, Electrochim. Acta, 2001, 46(23), 3573-3578. https://doi.org/10.1016/S0013-4686(01)00630-2
  27. M. J. Pacheco, V. Santos, L. Ciraco, and A. Lopes, J. Hazard. Mater., 2011, 186(2-3), 1033-1041. https://doi.org/10.1016/j.jhazmat.2010.11.108
  28. F. L. Migliorini, N. A. Braga, S. A. Alves, M. R. V. Lanza, M. R. Baldan, and N. G. Ferreira, J. Hazard. Mater., 2011, 192(3), 1683-1689. https://doi.org/10.1016/j.jhazmat.2011.07.007
  29. B. Boye, E. Brillas, A. Buso, G. Farnia, C. Flox, M. Giomo, and G. Sandona, Electrochim. Acta, 2006, 52(1), 256-262. https://doi.org/10.1016/j.electacta.2006.04.062
  30. H. Yu, H. Wang, X. Quan, S. Chen, and Y. Zhang, Electrochem. Commun., 2007, 9(9), 2280-2285. https://doi.org/10.1016/j.elecom.2007.06.037
  31. H. Yu, C. Ma, X. Quan, S. Chen, and H. Zhao, Environ. Sci. Technol., 2009, 43(6), 1935-1939. https://doi.org/10.1021/es8033878
  32. W. Boyles, The Science of Chemical Oxygen Demand, Hach Company, USA, 1997.
  33. W. Wen, H. Zhao, S. Zhang, and V. Pires, J. Phys. Chem. C, 2008, 112(10), 3875-3880. https://doi.org/10.1021/jp710900s
  34. A. J. Bard and L. R. Faulkner, Electrochemical methods: Fundamentals and applications, 2nd Edition, Wiley, New York, 2001.