DOI QR코드

DOI QR Code

The mechanical properties of 3D printed denture base resin incorporating essential oil microcapsules

  • 투고 : 2022.12.01
  • 심사 : 2023.07.19
  • 발행 : 2023.08.31

초록

PURPOSE. The aim of this study was to investigate the mechanical properties of three-dimensional (3D) printed denture base resin incorporating microcapsules containing plant essential oils. MATERIALS AND METHODS. Denture base specimens containing up to 3% w/v essential oil microcapsule powders (MCPs), i.e., eucalyptus, geranium, lavender, menthol, and tea tree, in two resins (Detax and NextDent 3D+) were 3D printed using two printers (Asiga and NextDent 5100). The dispersion and interaction of the MCPs in the resin were assessed by SEM while the mechanical properties of the incorporated denture base including flexural strength (MPa), flexural modulus (MPa), Vickers hardness (VHN), and surface roughness (Ra) were also subsequently evaluated. Statistical analysis of any differences in mean values was determined using a two-way ANOVA with Tukey's post hoc testing (α = .05). RESULTS. The spherical shape of the MCPs was maintained during the mixing and polymerization/printing process. However, the Detax-Asiga group showed significant agglomeration of the MCPs even at the lowest MCP concentration levels (0.5% w/v). Overall, as the microcapsule concentration increased, the mean flexural strength decreased, though the menthol MCP groups remained compliant with the ISO standard. The flexural modulus and harness remained relatively unchanged, and the flexural modulus complied with the ISO standard regardless of the MCP concentration. Surface roughness increased with the addition of the MCPs but also remained below that required for clinical acceptance. CONCLUSION. Incorporation of microencapsulated plant essential oils into 3D printed denture base resin was successfully achieved. While incorporation negatively influenced flexural strength and surface roughness, little effect on flexural modulus and Vickers hardness was demonstrated.

키워드

참고문헌

  1. Bilgin MS, Baytaroglu EN, Erdem A, Dilber E. A review of computer-aided design/computer-aided manufacture techniques for removable denture fabrication. Eur J Dent 2016;10:286-91. https://doi.org/10.4103/1305-7456.178304
  2. Stansbury JW, Idacavage MJ. 3D printing with polymers: Challenges among expanding options and opportunities. Dent Mater 2016;32:54-64. https://doi.org/10.1016/j.dental.2015.09.018
  3. Yue J, Zhao P, Gerasimov JY, van de Lagemaat M, Grotenhuis A, Rustema-Abbing M, van der Mei HC, Busscher HJ, Herrmann A, Ren Y. 3D-printable antimicrobial composite resins. Adv Funct Mater 2015;25:6756-67. https://doi.org/10.1002/adfm.201502384
  4. Bakry AM, Abbas S, Ali B, Majeed H, Abouelwafa MY, Mousa A, Liang L. Microencapsulation of oils: A comprehensive review of benefits, techniques, and applications. Compr Rev Food Sci Food Saf 2016;15:143-82. https://doi.org/10.1111/1541-4337.12179
  5. Alic B, Sebenik U, Krajnc M. Microencapsulation of butyl stearate with melamine-formaldehyde resin: Effect of decreasing the pH value on the composition and thermal stability of microcapsules. Express Polym Lett 2012;6:826-36. https://doi.org/10.3144/expresspolymlett.2012.88
  6. Augustin MA, Sanguansri L, Margetts C, Young B. Microencapsulation of food ingredients. Food Aust 2001;53:220-3.
  7. Hwang JS, Kim JN, Wee YJ, Yun JS, Jang HG, Kim SH, Ryu HW. Preparation and characterization of melamine-formaldehyde resin microcapsules containing fragrant oil. Biotechnol Bioprocess Eng 2006;11:332-6. https://doi.org/10.1007/BF03026249
  8. Yu D, Qiao W, Li Q, Pei G. Preparation and properties of olive oil microcapsules. J Fiber Bioeng Informat 2012;5:67-76. https://doi.org/10.3993/jfbi03201206
  9. Ocak B, Gulumser G, Baloglu E. Microencapsulation of Melaleuca alternifolia (Tea tree) oil by using simple coacervation method. J Essent Oil Res 2011;23:58-65. https://doi.org/10.1080/10412905.2011.9700470
  10. Zhang S, Chen J, Yin X, Wang X, Qiu B, Zhu L, Lin Q. Microencapsulation of tea tree oil by spray-drying with methyl cellulose as the emulsifier and wall material together with chitosan/alginate. J Appl Polym Sci 2017;134.
  11. Soliman E, El-Moghazy A, Mohy Eldin M, A. Massoud M. Microencapsulation of essential oils within alginate: Formulation and in vitro evaluation of antifungal activity. J Encapsulation Adsorpt Sci 2013;3:48-55. https://doi.org/10.4236/jeas.2013.31006
  12. Gutierrez TJ, Alvarez K. Biopolymers as microencapsulation materials in the food industry. In: Masuelli M, Renard D, editors. Advances in physicochemical properties of biopolymers (Part 2). Bentham Science Publishers; 2017. p. 296-322.
  13. Bruschi ML. Drug delivery systems. In: Bruschi ML, editor. Strategies to modify the drug release from pharmaceutical systems: Woodhead Publishing; 2015. p. 87-194.
  14. An S, Evans JL, Hamlet S, Love RM. Incorporation of antimicrobial agents in denture base resin: A systematic review. J Prosthet Dent 2021;126:188-95. https://doi.org/10.1016/j.prosdent.2020.03.033
  15. An S, Evans JL, Hamlet S, Love RM. Overview of incorporation of inorganic antimicrobial materials in denture base resin: A scoping review. J Prosthet Dent 2021 Oct 27;S0022-3913(21)00492-3. doi: 10.1016/j.prosdent.2021.09.004. Online ahead of print.
  16. Totu EE, Nechifor AC, Nechifor G, Aboul-Enein HY, Cristache CM. Poly(methyl methacrylate) with TiO2 nanoparticles inclusion for stereolitographic complete denture manufacturing - the fututre in dental care for elderly edentulous patients? J Dent 2017;59:68-77. https://doi.org/10.1016/j.jdent.2017.02.012
  17. Nagrath M, Sikora A, Graca J, Chinnici JL, Rahman SU, Reddy SG, Ponnusamy S, Maddi A, Arany PR. Functionalized prosthetic interfaces using 3D printing: Generating infection-neutralizing prosthesis in dentistry. Mater Today Commun 2018;15:114-9. https://doi.org/10.1016/j.mtcomm.2018.02.016
  18. Gad MM, Al-Harbi FA, Akhtar S, Fouda SM. 3D-printable denture base resin containing SiO2 nanoparticles: An in vitro analysis of mechanical and surface properties. J Prosthodont 2022;31:784-90. https://doi.org/10.1111/jopr.13483
  19. Hada T, Kanazawa M, Miyamoto N, Liu H, Iwaki M, Komagamine Y, Minakuchi S. Effect of different filler contents and printing directions on the mechanical properties for photopolymer resins. Int J Mol Sci 2022;23:2296.
  20. Oliveira Jde A, da Silva IC, Trindade LA, Lima EO, Carlo HL, Cavalcanti AL, de Castro RD. Safety and tolerability of essential oil from Cinnamomum zeylanicum blume leaves with action on oral Candidosis and its effect on the physical properties of the acrylic resin. Evid Based Complement Alternat Med 2014;2014:325670.
  21. Zhang K, Ren B, Zhou X, Xu HH, Chen Y, Han Q, Li B, Weir MD, Li M, Feng M, Cheng L. Effect of antimicrobial denture base resin on multi-species biofilm formation. Int J Mol Sci 2016;17:1-13. https://doi.org/10.3390/ijms17071033
  22. An S, Judge RB, Wong RH, Arzmi MH, Palamara JE, Dashper SG. Incorporation of the microencapsulated antimicrobial agent phytoncide into denture base resin. Aust Dent J 2018;63:302-11. https://doi.org/10.1111/adj.12640
  23. Jeon S, Jo YH, Yoon HI, Han JS. Antifungal effect, surface roughness, and cytotoxicity of three-dimensionally printed denture base with phytoncide-filled microcapsules: An in-vitro study. J Dent 2022;120:104098.
  24. Hada T, Kanazawa M, Iwaki M, Arakida T, Minakuchi S. Effect of printing direction on stress distortion of three-dimensional printed dentures using stereolithography technology. J Mech Behav Biomed Mater 2020;110:103949.
  25. ISO 20795-1. Dentistry - Base polymers Part 1: Denture base polymers. International Standards Organization (ISO); Geneva; Switzerland, 2013.
  26. Al-Dwairi ZN, Al Haj Ebrahim AA, Baba NZ. A comparison of the surface and mechanical properties of 3D printable denture-base resin material and conventional polymethylmethacrylate (PMMA). J Prosthodont 2023;32:40-8. https://doi.org/10.1111/jopr.13491
  27. Ali MY, Hung WNP. Micromachining. In: Hashmi MSJ, editor. Comprehensive materials finishing. Oxford: Elsevier; 2017. p. 322-43.