DOI QR코드

DOI QR Code

Effect of Microbially Induced Calcite Precipitation on Plant Growth

미생물에 의해 생성된 탄산 칼슘 침전이 식물 생장에 미치는 영향

  • Received : 2023.07.05
  • Accepted : 2023.07.28
  • Published : 2023.08.31

Abstract

Microbially induced calcite precipitation(MICP) is a novel cementation method meant to enhance soil engineering properties through the use of microorganisms. This study investigates the effect of different MICP concentrations on plant growth. Tall fescue seeds are grown in plant columns filled with Jumunjin sand. Following plant growth, the soil samples are treated with MICP via spraying method. The results indicate that the MICP-treated plants exhibit hampered growth compared with the untreated plants. pH and electrical conductivity(EC) tests are performed to analyze the changes in soil properties by MICP. The MICP-treated soils exhibit a pH = 7, similar to the untreated soil. However, the EC dramatically increases with the increase in the MICP concentration, which leads to an increase in the osmotic pressure of the soil surrounding the plant roots. Eventually, the higher osmotic pressure in MICP-treated soil hinders the absorption of water and nutrients in plant roots, thus inhibiting plant growth.

미생물에 의한 탄산칼슘 침전(MICP)은 생물학적 기술로 지반의 공학적 특성을 향상시키는 개량공법이다. 본 논문에서는 식물 생장에 MICP 약액의 농도가 미치는 영향을 분석하였다. 큰김의털 종자를 주문진 표준사로 채워진 식물 용기에서 생장시킨 다음에 표면 처리법으로 MICP 약액을 살포하였다. 실험 결과는 MICP 약액이 처리된 식물의 줄기 생장은 무처리 식물과 비교하여 억제되었다. MICP 약액으로 인한 토양의 화학적 성분 변화를 분석하기 위해 pH와 전기전도도를 측정하였으며, pH는 MICP 약액 처리와 상관 없이 모든 경우에서 pH 7에 가까운 중성상태를 보였지만, 전기전도도는 MICP 약액의 농도가 높을수록 증가하였다. MICP 처리 과정에서 발생한 이온들이 식물 뿌리 주변 토양의 삼투압을 증가시켜 식물 성장에 필요한 물과 양분의 흡수를 저해하였고, 궁극적으로 식물 생장을 억제하였기 때문이다.

Keywords

Acknowledgement

본 연구는 2022년 순천대학교 학술연구비(과제번호: 2022-0261) 공모과제의 지원으로 수행되었습니다. 이에 감사드립니다.

References

  1. Al Qabany, A., Soga, K., and Santamarina, C. (2012), "Factors Affecting Efficiency of Microbially Induced Calcite Precipitation", Journal of Geotechnical and Geoenvironmental Engineering, Vol.138, No.8, pp.992-1001.  https://doi.org/10.1061/(ASCE)GT.1943-5606.0000666
  2. Ben-Gal, A., Borochov-Neori, H., Yermiyahu, U., and Shani, U. (2009), "Is Osmotic Potential a More Appropriate Property than Electrical Conductivity for Evaluating Whole-plant Response to Salinity?", Environmental and Experimental Botany, Vol.65, No.2-3, pp.232-237.  https://doi.org/10.1016/j.envexpbot.2008.09.006
  3. Bernstein, L. (1975), "Effects of Salinity and Sodicity on Plant Growth", Annual review of phytopathology, Vol.13, No.1, pp.295- 312.  https://doi.org/10.1146/annurev.py.13.090175.001455
  4. Britto, D. T. and Kronzucker, H. J. (2002), "NH4+ Toxicity in Higher Plants: a Critical Review", Journal of plant physiology, Vol.159, No.6, pp.567-584.  https://doi.org/10.1078/0176-1617-0774
  5. Brower, J. E., Zar, J. H., and Von Ende, C. N. (1998), "Field and Laboratory Methods for General Ecology", WCB McGraw-Hill Boston, Vol.4. 
  6. Choi, S. G. and Park, S. S. (2016), "Engineering Characteristics of Bio-cemented Soil Mixed with PVA Fiber", Journal of the Korean Geotechnical Society, Vol.32, No.8, pp.27-33.  https://doi.org/10.7843/kgs.2016.32.8.27
  7. De Muynck, W., De Belie, N., and Verstraete, W. (2010), "Microbial Carbonate Precipitation in Construction Materials: a Review", Ecological engineering, Vol.36, No.2, pp.118-136.  https://doi.org/10.1016/j.ecoleng.2009.02.006
  8. DeJong, J. T., Mortensen, B. M., Martinez, B. C., and Nelson, D. C. (2010), "Bio-mediated Soil Improvement", Ecological Engineering, Vol.36, No.2, pp.197-210.  https://doi.org/10.1016/j.ecoleng.2008.12.029
  9. Flowers, T. and Yeo, A. (1989), "Effects of Salinity on Plant Growth and Crop Yields", Proc., Environmental Stress in Plants: Biochemical and Physiological Mechanisms, Springer, pp.101-119. 
  10. Jeon, G. S. (2018), "A Comparative Analysis of Effect on Control of Weeds Invasion Treatment of Banking Slope in the Expressway", Journal of The Korea Society of Forest Engineering and technology, Vol.16, No.3, pp.151-164. 
  11. Guo, S., Zhou, Y., Shen, Q., and Zhang, F. (2006), "Effect of Ammonium and Nitrate Nutrition on Some Physiological Processes in Higher Plants-growth, Photosynthesis, Photorespiration, and Water Relations", Plant Biology, pp.21-29. 
  12. Ivanov, V. and Chu, J. (2008), "Applications of Microorganisms to Geotechnical Engineering for Bioclogging and Biocementation of Soil in Situ", Reviews in Environmental Science and Bio/Technology, Vol.7, pp.139-153.  https://doi.org/10.1007/s11157-007-9126-3
  13. Kim, S. J., Kim, Y. T., Lee, S. H., and Do, J. (2022), "Preliminary Study on Application and Limitation of Microbially Induced Carbonate Precipitation to Improve Unpaved Road in Lateritic Region", Materials, Vol.15, No.20, pp.7219. 
  14. Lauchli, A. and Grattan, S. (2007), "Plant Growth and Development under Salinity Stress", Advances in molecular breeding toward drought and salt tolerant crops, pp.1-32. 
  15. Lee, J. H., Jung, J. W., Han, Y. S., and Chun, B. S. (2013), "A Study on the Mechanism of Soil Improvement Using Environment-friendly Organic Acid Material", Journal of the Korean Geotechnical Society, Vol.29, No.2, pp.23-34.  https://doi.org/10.7843/KGS.2013.29.2.23
  16. Liu, P., Yin, L., Wang, S., Zhang, M., Deng, X., Zhang, S., and Tanaka, K. (2015), "Enhanced Root Hydraulic Conductance by Aquaporin Regulation Accounts for Silicon Alleviated Salt-induced Osmotic Stress in Sorghum Bicolor L", Environmental and Experimental Botany, Vol.111, pp.42-51.  https://doi.org/10.1016/j.envexpbot.2014.10.006
  17. Park, K. H. and Kim, D. H. (2013), "Strength and Effectiveness of Grouting of Sand Treated with Bacteria", Journal of the Korean Geotechnical Society, Vol.29, No.2, pp.65-73.  https://doi.org/10.7843/kgs.2013.29.2.65
  18. Rahman, M. M., Hora, R. N., Ahenkorah, I., Beecham, S., Karim, M. R., and Iqbal, A. (2020), "State-of-the-art Review of Microbial-induced Calcite Precipitation and its Sustainability in Engineering Applications", Sustainability, Vol.12, No.15, pp.6281. 
  19. Safavizadeh, S., Montoya, B. M., and Gabr, M. A. (2019), "Microbial Induced Calcium Carbonate Precipitation in Coal Ash", Geotechnique, Vol.69, No.8, pp.727-740.  https://doi.org/10.1680/jgeot.18.P.062
  20. Sheldon, A. R., Dalal, R. C., Kirchhof, G., Kopittke , P. M., and Menzies, N. W. (2017), "The Effect of Salinity on Plant-available Water", Plant and Soil, Vol.418, pp.477-491.  https://doi.org/10.1007/s11104-017-3309-7
  21. Smith, J. L. and Doran, J. W. (1997), "Measurement and Use of pH and Electrical Conductivity for Soil Quality Analysis", Methods for assessing soil quality, Vol.49, pp.169-185.  https://doi.org/10.2136/sssaspecpub49.c10
  22. Song, H. K., Jeon, G. S., Kim, N. C., Park, G. S., Kwon, H. J., and Lee, J. H. (2007), "Selection of Replantation Species in Roadside Cutting-slope Area of the Baekdu Range", J. Korean Env. Res. & Tech, Vol.10, No.3, pp.52-59. 
  23. Stocks-Fischer, S., Galinat, J. K., and Bang, S. S. (1999), "Microbiological Precipitation of CaCO3", Soil Biology and Biochemistry, Vol.31, No.11, pp.1563-1571.  https://doi.org/10.1016/S0038-0717(99)00082-6
  24. Yermiyahu, U., Ben-Gal, A., Keren, R., and Reid, R. (2008), "Combined Effect of Salinity and Excess Boron on Plant Growth and Yield", Plant and Soil, Vol.304, pp.73-87. https://doi.org/10.1007/s11104-007-9522-z