DOI QR코드

DOI QR Code

Experimental Study on the Effect of Degree of Saturation on the Electrical Conductivity of Soils

포화도에 따른 흙의 전기전도도 변화에 대한 실험적 연구

  • Ko, Hyojung (Dept. of Civil and Environmental Engrg., Hanyang Univ.) ;
  • Choo, Hyunwook (Dept. of Civil and Environmental Engrg., Hanyang Univ.)
  • 고효정 (한양대학교 건설환경공학과) ;
  • 추현욱 (한양대학교 건설환경공학과)
  • Received : 2023.06.19
  • Accepted : 2023.08.20
  • Published : 2023.08.31

Abstract

The degree of saturation determines the connectivity of void space and the particle surface. Thus, it greatly affects the electrical conductivity of soils. This study aimed to analyze the electrical conductivities of coarse grains with a high relevance of pore water conduction and fine grains with a high relevance of surface conduction based on the degree of saturation. It also aimed to express the electrical conductivity of unsaturated soils as a combination of surface and pore water conductions using the modified Archie's equation. Samples were prepared in a plastic cell equipped with four electrodes, and the electrical conductivity was measured based on the porosity at various degrees of saturation (40%~100%). The results demonstrate that Archie's equation can be used to express the electrical conductivity of coarse grains, with a saturation exponent of ~1.93 regardless of the pore water conductivity. However, the saturation exponent of fine grains varied considerably with pore water concentration. This variation can be attributed to the relative magnitude of surface conduction with respect to the electrical conductivity of soils at different pore water concentrations. Thus, the degree of saturation has varying effects on pore water conduction and surface conduction. Therefore, different saturation exponents must be used for pore water conduction and surface conduction to predict the electrical conductivity of unsaturated soils using the modified Archie's equation.

흙은 간극수와 이중층수를 통해 전기적 흐름이 발생하기 때문에 간극수 및 이중층수의 연결성, 즉 포화도에 따라 전기전도도가 변화한다. 본 연구에서는 간극수 전도가 지배적인 사질토와 표면 전도 효과가 두드러진 세립토에서 포화도에 따른 전기전도도를 분석하고, 수정된 Archie의 방정식을 통해 불포화토의 전기전도도를 표면 전도와 간극수 전도의 합으로 표현하고자 한다. 4개의 전극이 설치된 플라스틱 셀에 다양한 포화도(40%-100%)와 간극률(0.45-0.82)를 갖는 시료를 조성하였으며, 간극수의 농도를 조절하기 위해 시료 조성에 사용된 간극수는 0M(증류수)-0.5M NaCl 용액을 사용하였다. 시험 결과, 사질토의 전기전도도는 포화도의 지수함수로 표현되었으며, 포화도의 지수는 간극수의 농도와 관계없이 1.93로 결정되었다. 반면 세립토의 경우, 포화도의 지수는 간극수의 농도에 따라 큰 차이를 보였다. 이는 각 간극수의 농도에서 흙의 전기전도도에 대한 표면전도의 상대적인 크기가 다르기 때문이다. 다시 말해, 포화도가 간극수전도와 표면전도에 미치는 영향이 다르며, 수정된 Archie의 방정식으로 흙의 전기전도도를 예측하기 위해서는 간극수 전도와 표면 전도에 각각 다른 포화도의 지수를 사용해야함을 의미한다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구이며, 이에 깊은 감사를 드립니다(RS-2023-00221719).

References

  1. Abu-Hassanein, Z. S., Benson, C. H., and Blotz, L. R. (1996), Electrical Resistivity of Compacted Clays, Journal of geotechnical engineering, Vol.122, No.5, pp.397-406.  https://doi.org/10.1061/(ASCE)0733-9410(1996)122:5(397)
  2. Aprile, F. and Lorandi, R. (2012), Evaluation of Cation Exchange Capacity (CEC) in Tropical Soils Using Four Different Analytical Methods, Journal of Agricultural Science, Vol.4, No.6, p.278. 
  3. Archie, G. E. (1942), The Electrical Resistivity Log as an Aid in Determining Some Reservoir Characteristics, Transactions of the AIME, Vol.146, No.1, pp.54-62.  https://doi.org/10.2118/942054-G
  4. Atkins Jr, E. and G. H. Smith (1961), "The Significance of Particle Shape in Formation Resistivity Factor-porosity Relationships", Journal of Petroleum Technology, Vol.13, No.3, pp.285-291.  https://doi.org/10.2118/1560-G-PA
  5. Basso, B., Amato, M., Bitella, G., Rossi, R., Kravchenko, A., Sartori, L., Carvahlo, L., and Gomes, J. (2010), "Two Dimensional Spatial and Temporal Variation of Soil Physical Properties in Tillage Systems Using Electrical Resistivity Tomography", Agronomy Journal, Vol.102, No.2, pp.440-449.  https://doi.org/10.2134/agronj2009.0298
  6. Besson, A., Cousin, I., Dorigny, A., Dabas, M., and King, D. (2008), "The Temperature Correction for the Electrical Resistivity Measurements in Undisturbed Soil Samples: Analysis of the Existing Conversion Models and Proposal of a New Model", Soil Science, Vol.173, No.10, pp.707-720.  https://doi.org/10.1097/SS.0b013e318189397f
  7. Choo, H. and Burns, S. E. (2014), Review of Archie's Equation through Theoretical Derivation and Experimental Study on Uncoated and Hematite Coated Soils, Journal of Applied Geophysics, Vol.105, pp.225-234.  https://doi.org/10.1016/j.jappgeo.2014.03.024
  8. Choo, H., Kim, J., Lee, W., and Lee, C. (2016), Relationship between Hydraulic Conductivity and Formation Factor of Coarse-grained Soils as a Function of Particle Size, Journal of Applied Geophysics, Vol.127, pp.91-101.  https://doi.org/10.1016/j.jappgeo.2016.02.013
  9. Choo, H., Park, J., Do, T. T., and Lee, C. (2022), Estimating the Electrical Conductivity of Clayey Soils with Varying Mineralogy Using the Index Properties of Soils, Applied Clay Science, 217. 
  10. Fan, Y., Pan, B., Guo, Y., and Lei, J. (2020), "Effects of Clay Minerals and Pore-Water Conductivity on Saturation Exponent of Clay-Bearing Sandstones Based on Digital Rock". 
  11. Friedman, S. P. (2005), Soil Properties Influencing Apparent Electrical Conductivity: a Review, Computers and electronics in agriculture, Vol.46, No.1-3, pp.45-70.  https://doi.org/10.1016/j.compag.2004.11.001
  12. Glover, P. W., Hole, M. J., and Pous, J. (2000), A Modified Archie's Law for Two Conducting Phases, Earth and Planetary Science Letters, Vol.180, No.3-4, pp.369-383.  https://doi.org/10.1016/S0012-821X(00)00168-0
  13. Gorman, T. and Kelly, W. (1990), Electrical-hydraulic Properties of Unsaturated Ottawa Sands, Journal of Hydrology, Vol.118, No. 1-4, pp.1-18.  https://doi.org/10.1016/0022-1694(90)90247-U
  14. Keller, G. V. and Frischknecht, F. C. (1966), Electrical Methods in Geophysical Prospecting. 
  15. Khalil, M. A. and F. A. Monterio Santos (2009), "Influence of Degree of Saturation in the Electric Resistivity-hydraulic Conductivity Relationship", Surveys in geophysics, Vol.30, pp.601-615.  https://doi.org/10.1007/s10712-009-9072-4
  16. Kim, J., Choo, H., Lee, C., and Lee, W. (2015), Relationship between Hydraulic Conductivity and Electrical Conductivity in Sands, Journal of the Korean Geotechnical Society, Vol.31, No.6, pp.45-58.  https://doi.org/10.7843/KGS.2015.31.6.45
  17. Kim, J. H., Yoon, H. K., Cho, S. H., Kim, Y. S., and Lee, J. S. (2009), Four Electrode Resistivity Probe for Porosity Evaluation, Journal of Geotech Test, Vol.34, No.6, pp.668-675.  https://doi.org/10.1520/GTJ102866
  18. Kim, J.-H., Yoon, H.-K., Choi, Y.-K., and Lee, J.-S. (2009), Porosity Evaluation of Offshore Soft Soils by Electrical Resistivity Cone Probe, Journal of the Korean Geotechnical Society, Vol.25, No.2, pp.45-54.  https://doi.org/10.7843/KGS.2009.25.2.45
  19. Li, Q., Xu, S., and Zeng, Q. (2016), The Effect of Water Saturation Degree on the Electrical Properties of Cement-based Porous Material, Cement and Concrete Composites, Vol.100, No.70, pp.35-47.  https://doi.org/10.1016/j.cemconcomp.2016.03.008
  20. Mojid, M. and H. Cho (2006), "Estimating the Fully Developed Diffuse Double Layer Thickness from the Bulk Electrical Conductivity in Clay", Applied Clay Science, Vol.33, No.3-4, pp.278-286.  https://doi.org/10.1016/j.clay.2006.06.002
  21. Revil, A., Cathles III, L. M., Losh, S., and Nunn, J. A. (1998), "Electrical Conductivity in Shaly Sands with Geophysical Applications", Journal of Geophysical Research: Solid Earth, Vol.103, No.B10, pp.23925-23936.  https://doi.org/10.1029/98JB02125
  22. Rinaldi, V. A. and Cuestas, G. A. (2002), Ohmic Conductivity of a Compacted Silty Clay, Journal of Geotechnical and Geoenvironmental Engineering, Vol.128, No.10, pp.824-835.  https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(824)
  23. Salem, H. S. and G. V. Chilingarian (1999), "The Cementation Factor of Archie's Equation for Shaly Sandstone Reservoirs", Journal of Petroleum Science and Engineering, Vol.23, No.2, pp.83-93.  https://doi.org/10.1016/S0920-4105(99)00009-1
  24. Santamarina, J.C., Klein, K.A., Wang, Y.H., and Prencke, E. (2002), Specific Surface:Determination and Relevance, Can. Geotech. J., Vol.39, No.1, pp.233-241.  https://doi.org/10.1139/t01-077
  25. Samouelian, A., Cousin, I., Tabbagh, A., Bruand, A., and Richard, G. (2005), "Electrical Resistivity Survey in Soil Science: a Review", Soil and Tillage Research, Vol.83, No.2, pp.173-193.  https://doi.org/10.1016/j.still.2004.10.004
  26. Schon, J. H. (2015), Physical properties of rocks: Fundamentals and principles of petrophysics, Elsevier. 
  27. Spagnoli, G. and Shimobe, S. (2019), A Statistical Reappraisal of the Relationship between Liquid Limit and Specific Surface Area, Cation Exchange Capacity and Activity of Clays, Journal of Rock Mechanics and Geotechnical Engineering, Vol.11, No.4, pp.874-881. https://doi.org/10.1016/j.jrmge.2018.11.007