DOI QR코드

DOI QR Code

Asymbiotic Spore Production of Rhizoglomus intraradices in a Medium Containing Myristate

  • Jae-Eui Cha (Department of Biology Education, Korea National University of Education) ;
  • Ahn-Heum Eom (Department of Biology Education, Korea National University of Education)
  • Received : 2023.04.16
  • Accepted : 2023.05.17
  • Published : 2023.06.30

Abstract

This study examined the effects of myristate on an asymbiotic culture of Rhizoglomus intraradices, a species of arbuscular mycorrhizal fungi (AMF; Glomeromycota). Mycelial growth and sporulation in a modified medium containing myristate were observed. The findings demonstrated that myristate induced R. intraradices spore formation, with daughter spores having a smaller diameter than the parent spores. This observation is consistent with previous studies on other Rhizoglomus species. Further studies are needed to investigate the potential for continuous culture, mass production using daughter spores, and the application of AMF colonization techniques in plants.

Keywords

References

  1. Anand K, Pandey GK, Kaur T, et al. Arbuscular mycorrhizal fungi as a potential biofertilizers for agricultural sustainability. J App Biol Biotech. 2022;10(1):90-107. https://doi.org/10.7324/JABB.2022.10s111
  2. Willis A, Rodrigues BF, Harris PJ. The ecology of arbuscular mycorrhizal fungi. Crit Rev Plant Sci. 2013;32(1):1-20. https://doi.org/10.1080/07352689.2012.683375
  3. Mugnier J, Mosse B. Vesicular-arbuscular mycorrhizal infection in transformed root-inducing TDNA roots grown axenically. Phytopathology. 1987;77(6):1045-1050. https://doi.org/10.1094/Phyto-77-1045
  4. Declerck S, Strullu DG, Plenchette C. In vitro mass-production of the arbuscular mycorrhizal fungus, Glomus versiforme, associated with Ri T-DNA transformed carrot roots. Mycol Res. 1996; 100(10):1237-1242. https://doi.org/10.1016/S0953-7562(96)80186-9
  5. Sugiura Y, Akiyama R, Tanaka S, et al. Myristate can be used as a carbon and energy source for the asymbiotic growth of arbuscular mycorrhizal fungi. Proc Natl Acad Sci USA. 2020;117(41):25779-25788. https://doi.org/10.1073/pnas.2006948117
  6. Tanaka S, Hashimoto K, Kobayashi Y, et al. Asymbiotic mass production of the arbuscular mycorrhizal fungus Rhizophagus clarus. Commun Biol. 2022;5(1):1-9. https://doi.org/10.1038/s42003-021-02967-5
  7. Lee J, Lee S, Young JPW. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol. 2008;65(2):339-349. https://doi.org/10.1111/j.1574-6941.2008.00531.x
  8. Shen Q, Kirschbaum MU, Hedley MJ, et al. Testing an alternative method for estimating the length of fungal hyphae using photomicrography and image processing. PLoS One. 2016;11(6):e0157017.
  9. Doner LW, B ecard G. Solubilization of gellan gels by chelation of cations. Biotechnol Tech. 1991;5(1):25-28. https://doi.org/10.1007/BF00152749
  10. Hildebrandt U, Ouziad F, Marner FJ, et al. The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores. FEMS Microbiol Lett. 2006;254(2):258-267. https://doi.org/10.1111/j.1574-6968.2005.00027.x
  11. Jabaji-Hare S. Lipid and fatty acid profiles of some vesicular-arbuscular mycorrhizal fungi: contribution to taxonomy. Mycologia. 1988;80(5):622-629. https://doi.org/10.1080/00275514.1988.12025592
  12. Marleau J, Dalp e Y, St-Arnaud M, et al. Spore development and nuclear inheritance in arbuscular mycorrhizal fungi. BMC Evol Biol. 2011;11(1):1-11. https://doi.org/10.1186/1471-2148-11-1
  13. Selvakumar G, Krishnamoorthy R, Kim K, et al. Propagation technique of arbuscular mycorrhizal fungi isolated from coastal reclamation land. Eur J Soil Biol. 2016;74:39-44. https://doi.org/10.1016/j.ejsobi.2016.03.005
  14. Selvakumar G, Shagol CC, Kang Y, et al. Arbuscular mycorrhizal fungi spore propagation using single spore as starter inoculum and a plant host. J Appl Microbiol. 2018;124(6):1556-1565. https://doi.org/10.1111/jam.13714