DOI QR코드

DOI QR Code

Effect of Abiotic Factors on Fumosorinone Production from Cordyceps fumosorosea via Solid-State Fermentation

  • Tahir Khan (College of Life Sciences, Yunnan University) ;
  • Dong-Hai Hou (College of Life Sciences, Yunnan University) ;
  • Jin-Na Zhou (College of Science, Tibet University) ;
  • Yin-Long Yang (The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University) ;
  • Hong Yu (The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University)
  • Received : 2023.02.06
  • Accepted : 2023.05.03
  • Published : 2023.06.30

Abstract

Cordyceps fumosorosea is an important species in the genus of Cordyceps, containing a variety of bioactive compounds, including fumosorinone (FU). This study was a ground-breaking assessment of FU levels in liquid and solid cultures. The present study focused on the impacts of solid-state fermentation (SSF) using solid substrates (wheat, oat, and rice), as well as the effects of fermentation parameters (pH, temperature, and incubation period), on the generation of FU. All the fermentation parameters had significant effects on the synthesis of FU. In a study of 25 ℃, 5.5 pH, and 21 days of incubation period combinations calculated -to give maximal FU production, it was found that the optimal values were 25 ℃, 5.5 pH, and 21 days, respectively. In a solid substrate medium culture, FU could be produced from SSF. At 30 days, a medium composed of rice yielded the most FU (798.50 mg/L), followed by a medium composed of wheat and oats (640.50 and 450.50 mg/L), respectively. An efficient method for increasing FU production on a large scale could be found in this approach. The results of this study might have multiple applications in different industrial fermentation processes.

Keywords

Acknowledgement

Thanks to Yunnan University, School of Life Sciences, for providing us with all the facilities we needed to do our work as well as financial support.

References

  1. Liu YN, Liu BY, Ma YC, et al. Analysis of reference genes stability and histidine kinase expression under cold stress in Cordyceps militaris. PLOS One. 2020;15(8):e0236898.
  2. Lou H, Zhao W, Chen BX, et al. Cmfhp gene mediates fruiting body development and carotenoid production in Cordyceps militaris. Biomolecules. 2020;10(3):410.
  3. Kumar C, Jacob TK, Devasahayam S, et al. Characterization and biocontrol potential of a naturally occurring isolate of Metarhizium pingshaense infecting Conogethes punctiferalis. Microbiol Res. 2021;243:126645.
  4. Zhang J, Liu SS, Yuan WY, et al. Carotane-type sesquiterpenes from cultures of the insect pathogenic fungus Isaria fumosorosea. J Asian Nat Prod Res. 2019;21(3):234-240. https://doi.org/10.1080/10286020.2017.1410143
  5. Mularczyk M, Michalak I, Marycz K. Astaxanthin and other nutrients from Haematococcus pluvialismultifunctional applications. Mar Drugs. 2020;18(9):459.
  6. Kepler RM, Jennifer LAJ, Hywel-Jones NL, et al. A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales). Ima Fungus. 2017;8(2):335-353.; https://doi.org/10.5598/imafungus.2017.08.02.08
  7. Ali S, Wu JH, Huang Z, et al. Production and regulation of extracellular chitinase from the entomopathogenic fungus Isaria fumosorosea. Biocontrol Sci. Technol. 2010a;20(7):723-738. https://doi.org/10.1080/09583151003714091
  8. Ali S, Huang Z, Ren SX. Production of cuticle degrading enzymes by Isaria fumosorosea and their evaluation as a biocontrol agent against diamondback moth. J Pest Sci. 2010b;83(4):361-370. https://doi.org/10.1007/s10340-010-0305-6
  9. Ali S, Zhang C, Wang ZQ, et al. Toxicological and biochemical basis of synergism between the entomopathogenic fungus Lecanicillium muscarium and the insecticide matrine against Bemisia tabaci (Gennadius). Sci Rep. 2017;7:46558.
  10. Banu AN, Balasubramanian C. Optimization synthesis of silver nanoparticles using Isaria fumosorosea against human vector mosquitoes. Parasitol Res. 2014;113(10):3843-3851.
  11. Wang XS, Xu J, Wang XM, et al. Isaria fumosorosea-based zero-valent iron nanoparticles affect the growth and survival of sweet potato whitefly, Bemisia tabaci (Gennadius). Pest Manag. Sci. 2019;75:274-2181. 10.1002-5340. https://doi.org/10.1002-5340
  12. Wang C, Chen WH, Han YF. Advances in researches on Isaria fumosorosea, an important entomopathogenic fungi. Guizhou Agricul. Sci. 2016;44(10):74-76.
  13. Buchter C, Koch K, Freyer M, et al. The mycotoxin beauvericin impairs development, fertility, and life span in the nematode Caenorhabditis elegans accompanied by increased germ cell apoptosis and lipofuscin accumulation. Toxicol Lett. 2020;334:102-109. https://doi.org/10.1016/j.toxlet.2020.09.016
  14. Liu ZQ, Liu T, Li C, et al. Fumosorinone, a novel PTP1B inhibitor, activates insulin signaling in insulin-resistance HepG2 cells and shows anti-diabetic effects in diabetic KKAy mice. Toxicol. Appl. Pharmacol. 2015;03:011.
  15. Luo DQ, Zhang J, Liu ZQ. Protein tyrosine phosphatase inhibitor, preparation method and uses thereof [P], PCT/CN2013/07523, Pub. No.: WO/2013/1742072013. (28.11.13).
  16. Elchebly M, Payette P, Michaliszyn E, et al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase1B gene. Science. 1999;283(5407):1544-1548. https://doi.org/10.1126/science.283.5407.1544
  17. Hooft van Huijsduijnen R, Bombrun A, Swinnen D. Selecting protein tyrosine phosphatases as drug targets. Drug Discov Today. 2002;7(19):1013-1019. https://doi.org/10.1016/S1359-6446(02)02438-8
  18. Liu ZQ, Chen YQ, Zhang QT, et al. Transcriptome analysis of MDA-MB-231 cells treated with fumosorinone isolated from insect pathogenic fungi. Anti-Cancer Agents Me. 2020;20(4):417-428. https://doi.org/10.2174/1871520619666191212150322
  19. Wen TC, Li GR, Kang JC, et al. Preparation of liquid seed and optimal fermentation conditions for mycelial biomass and cordycepin production in submerged cultivation of Cordyceps militaris. Food Sci. 2012;33(05):144-149.
  20. Liu GJ, Zhou SJ, Yang SL, et al. Research process of cordycepin in Cordyceps militaris. Food Sci. 2013;34(21):408-413.
  21. Liang ZC, Liang CH, Wu CY. Various grain substrates for the production of fruiting bodies and bioactive compounds of the medicinal caterpillar mushroom, Cordyceps militaris (Ascomycetes). Int J Med Mushrooms. 2014;16(6):569-578. https://doi.org/10.1615/IntJMedMushrooms.v16.i6.60
  22. Luo Y, Zhang ZJ, Zhou YB, et al. Effects of different grain medium on mycelium growth of Cordyceps militaris. Edible Fungi. 2020;42(2):40-42.
  23. Wang YB, Wang Y, Fan Q, et al. Multigene phylogeny of the family Cordycipitaceae (Hypocreales): new taxa and the new systematic position of the Chinese cordycipitoid fungus Paecilomyces hepiali. Fungal Divers. 2020;103(1):1-46. https://doi.org/10.1007/s13225-020-00457-3
  24. Tuli HS, Sharma AK, Sandhu SS. Optimization of fermentation conditions for cordycepin production using Cordyceps militaris 3936. J Biol Chem Sci. 2014;1:35.
  25. Hung LT, Keawsompong S, Hanh VT, et al. Effect of temperature on cordycepin production in Cordyceps militaris. Thai J of Agr Sci. 2009;42:219-225.
  26. Zhou SJ, Liu GJ, Shang HZ, et al. Progress in artificial culture technology of Cordyceps militaris. Jiangsu Agr Sci. 2014;42(7):13-17.
  27. Leung PH, Wu JY. Effects of ammonium feeding on the production of bioactive metabolites (cordycepin and exopolysaccharides) in the mycelial culture of a Cordyceps sinensis fungus. J Appl Microbiol. 2007;103(5):1942-1949.
  28. Si-Min Z, Mei D, Wang-Bin C, et al. Liquid culture conditions for promoting cordycepin secreted from Cordyceps militaris mycelia. Mycosystema. 2011;30(2):229-234.
  29. Zhang XH, Zhang H, Zhang WZ. The most suitable submerged culture conditions of Paecilomyces fumosaroseus. J Microbiol. 2006;06:15-18.
  30. When T, Li G, Kang J, et al. Optimization of solid-state fermentation for ruiting body growth and cordycepin production by Cordyceps militaris. Chiang Mai J Sci. 2014;41(4):858-872.