DOI QR코드

DOI QR Code

The optimal dosage of hyaluronic acid for bone regeneration in rat calvarial defects

  • Ling Li (Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Jungwon Lee (Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Young-Dan Cho (Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Sungtae Kim (Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Yang-Jo Seol (Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Yong-Moo Lee (Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Ki-Tae Koo (Department of Periodontology and Dental Research Institute, School of Dentistry, Seoul National University)
  • 투고 : 2022.06.20
  • 심사 : 2022.10.19
  • 발행 : 2023.08.31

초록

Purpose: Hyaluronic acid (HA) affects angiogenesis and promotes the migration and differentiation of mesenchymal cells, thereby activating the osteogenic ability of osteoblasts. Although studies on the action of HA during bone regeneration are being actively conducted, the optimal dose of HA required for bone regeneration remains unclear. Therefore, the purpose of this study was to elucidate the most effective HA dose for bone formation using a rat critical-size defect model. Methods: Thirty rats were randomly divided into 5 groups, with 6 rats in each group. An absorbable collagen sponge soaked with HA or saline was used to fill an 8-mm defect, which was then covered with a collagen membrane. Different treatments were performed for each group as follows: (1) saline control, (2) 1 mg/mL HA, (3) 25 mg/mL HA, (4) 50 mg/mL HA, or (5) 75 mg/mL HA. After a healing period of 4 weeks, micro-computed tomography and histological analysis were performed. The obtained values were analyzed using analysis of variance and the Tukey test (P<0.05). Results: At week 4, the 75 mg/mL HA group had the highest bone volume/total volume ratio, new bone, and bone fill among the 5 groups, and these values were significantly different from those observed in the control group (P<0.01) and 1 mg/mL HA group (P<0.001). More active bone formation was observed in the higher-dose HA groups (25 mg/mL, 50 mg/mL, and 75 mg/mL HA), which included a large amount of woven bone. Conclusions: The 75 mg/mL HA group showed better bone formation than the other groups (1, 25, and 50 mg/mL HA and control).

키워드

과제정보

The project was supported by a grant from the GENOSS (NCR19008), Republic of Korea.

참고문헌

  1. de Brito Bezerra B, Mendes Brazao MA, de Campos ML, Casati MZ, Sallum EA, Sallum AW. Association of hyaluronic acid with a collagen scaffold may improve bone healing in critical-size bone defects. Clin Oral Implants Res 2012;23:938-42. https://doi.org/10.1111/j.1600-0501.2011.02234.x
  2. Elgali I, Omar O, Dahlin C, Thomsen P. Guided bone regeneration: materials and biological mechanisms revisited. Eur J Oral Sci 2017;125:315-37. https://doi.org/10.1111/eos.12364
  3. Chen WJ. Functions of hyaluronan in wound repair. In: Hyaluronan. Amsterdam: Elsevier; 2002. p.147-56.
  4. Necas J, Bartosikova L, Brauner P, Kolar J. Hyaluronic acid (hyaluronan): a review. Vet Med (Praha) 2008;53:397-411. https://doi.org/10.17221/1930-VETMED
  5. Fakhari A, Berkland C. Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in osteoarthritis treatment. Acta Biomater 2013;9:7081-92. https://doi.org/10.1016/j.actbio.2013.03.005
  6. Litwiniuk M, Krejner A, Speyrer MS, Gauto AR, Grzela T. Hyaluronic acid in inflammation and tissue regeneration. Wounds 2016;28:78-88.
  7. Sasaki T, Watanabe C. Stimulation of osteoinduction in bone wound healing by high-molecular hyaluronic acid. Bone 1995;16:9-15. https://doi.org/10.1016/8756-3282(95)80005-B
  8. Segura T, Anderson BC, Chung PH, Webber RE, Shull KR, Shea LD. Crosslinked hyaluronic acid hydrogels: a strategy to functionalize and pattern. Biomaterials 2005;26:359-71. https://doi.org/10.1016/j.biomaterials.2004.02.067
  9. Toole BP. Hyaluronan: from extracellular glue to pericellular cue. Nat Rev Cancer 2004;4:528-39. https://doi.org/10.1038/nrc1391
  10. Cai S, Xie Y, Bagby TR, Cohen MS, Forrest ML. Intralymphatic chemotherapy using a hyaluronan-cisplatin conjugate. J Surg Res 2008;147:247-52. https://doi.org/10.1016/j.jss.2008.02.048
  11. Underhill C. CD44: the hyaluronan receptor. J Cell Sci 1992;103:293-8. https://doi.org/10.1242/jcs.103.2.293
  12. Zhai P, Peng X, Li B, Liu Y, Sun H, Li X. The application of hyaluronic acid in bone regeneration. Int J Biol Macromol 2020;151:1224-39. https://doi.org/10.1016/j.ijbiomac.2019.10.169
  13. West DC, Hampson IN, Arnold F, Kumar S. Angiogenesis induced by degradation products of hyaluronic acid. Science 1985;228:1324-6. https://doi.org/10.1126/science.2408340
  14. Pilloni A, Bernard GW. Low molecular weight hyaluronic acid increases osteogenesis in vitro. J Dent Res 1992;71:574.
  15. Zheng Shu X, Liu Y, Palumbo FS, Luo Y, Prestwich GD. In situ crosslinkable hyaluronan hydrogels for tissue engineering. Biomaterials 2004;25:1339-48. https://doi.org/10.1016/j.biomaterials.2003.08.014
  16. Lei Y, Gojgini S, Lam J, Segura T. The spreading, migration and proliferation of mouse mesenchymal stem cells cultured inside hyaluronic acid hydrogels. Biomaterials 2011;32:39-47. https://doi.org/10.1016/j.biomaterials.2010.08.103
  17. Mendes RM, Silva GA, Lima MF, Calliari MV, Almeida AP, Alves JB, et al. Sodium hyaluronate accelerates the healing process in tooth sockets of rats. Arch Oral Biol 2008;53:1155-62. https://doi.org/10.1016/j.archoralbio.2008.07.001
  18. Kim JJ, Song HY, Ben Amara H, Kyung-Rim K, Koo KT. Hyaluronic acid improves bone formation in extraction sockets with chronic pathology: a pilot study in dogs. J Periodontol 2016;87:790-5. https://doi.org/10.1902/jop.2016.150707
  19. Huang L, Cheng YY, Koo PL, Lee KM, Qin L, Cheng JC, et al. The effect of hyaluronan on osteoblast proliferation and differentiation in rat calvarial-derived cell cultures. J Biomed Mater Res A 2003;66:880-4. https://doi.org/10.1002/jbm.a.10535
  20. Patterson J, Siew R, Herring SW, Lin AS, Guldberg R, Stayton PS. Hyaluronic acid hydrogels with controlled degradation properties for oriented bone regeneration. Biomaterials 2010;31:6772-81. https://doi.org/10.1016/j.biomaterials.2010.05.047
  21. Zhao N, Wang X, Qin L, Zhai M, Yuan J, Chen J, et al. Effect of hyaluronic acid in bone formation and its applications in dentistry. J Biomed Mater Res A 2016;104:1560-9. https://doi.org/10.1002/jbm.a.35681
  22. Pilloni A, Bernard GW. The effect of hyaluronan on mouse intramembranous osteogenesis in vitro. Cell Tissue Res 1998;294:323-33. https://doi.org/10.1007/s004410051182
  23. Takeda K, Sakai N, Shiba H, Nagahara T, Fujita T, Kajiya M, et al. Characteristics of high-molecular-weight hyaluronic acid as a brain-derived neurotrophic factor scaffold in periodontal tissue regeneration. Tissue Eng Part A 2011;17:955-67. https://doi.org/10.1089/ten.tea.2010.0070
  24. Kaneko K, Higuchi C, Kunugiza Y, Yoshida K, Sakai T, Yoshikawa H, et al. Hyaluronan inhibits BMP-induced osteoblast differentiation. FEBS Lett 2015;589:447-54. https://doi.org/10.1016/j.febslet.2014.12.031
  25. Park D, Kim Y, Kim H, Kim K, Lee YS, Choe J, et al. Hyaluronic acid promotes angiogenesis by inducing RHAMM-TGFβ receptor interaction via CD44-PKCδ. Mol Cells 2012;33:563-74. https://doi.org/10.1007/s10059-012-2294-1
  26. Yang S, Zhu B, Yin P, Zhao L, Wang Y, Fu Z, et al. Integration of human umbilical cord mesenchymal stem cells-derived exosomes with hydroxyapatite-embedded hyaluronic acid-alginate hydrogel for bone regeneration. ACS Biomater Sci Eng 2020;6:1590-602. https://doi.org/10.1021/acsbiomaterials.9b01363
  27. Huang H, Feng J, Wismeijer D, Wu G, Hunziker EB. Hyaluronic acid promotes the osteogenesis of BMP-2 in an absorbable collagen sponge. Polymers (Basel) 2017;9:339.
  28. Bhakta G, Lim ZX, Rai B, Lin T, Hui JH, Prestwich GD, et al. The influence of collagen and hyaluronan matrices on the delivery and bioactivity of bone morphogenetic protein-2 and ectopic bone formation. Acta Biomater 2013;9:9098-106. https://doi.org/10.1016/j.actbio.2013.07.008
  29. James AW, Zara JN, Zhang X, Askarinam A, Goyal R, Chiang M, et al. Perivascular stem cells: a prospectively purified mesenchymal stem cell population for bone tissue engineering. Stem Cells Transl Med 2012;1:510-9. https://doi.org/10.5966/sctm.2012-0002
  30. Matheus HR, Ervolino E, Gusman DJ, Alves BE, Fiorin LG, Pereira PA, et al. Association of hyaluronic acid with a deproteinized bovine graft improves bone repair and increases bone formation in critical-size bone defects. J Periodontol 2021;92:1646-58. https://doi.org/10.1002/JPER.20-0613
  31. Yeom J, Hwang BW, Yang DJ, Shin HI, Hahn SK. Effect of osteoconductive hyaluronate hydrogels on calvarial bone regeneration. Biomater Res 2014;18:8.
  32. Segari WA, Radwan DA, Abd El Hamid MA. The effect of adding hyaluronic acid to calcium phosphate on periapical tissue healing following periradicular surgery in dogs. Tanta Dent J 2014;11:122-9. https://doi.org/10.1016/j.tdj.2014.07.001