DOI QR코드

DOI QR Code

APPLICATION OF GENERALIZED WEAK CONTRACTION IN INTEGRAL EQUATION

  • Amrish Handa (Department of Mathematics, Govt. P. G. Arts and Science College)
  • 투고 : 2022.07.25
  • 심사 : 2023.05.22
  • 발행 : 2023.08.31

초록

This manuscript is divided into three segments. In the first segment, we prove a unique common fixed point theorem satisfying generalized weak contraction on partially ordered metric spaces and also give an example to support our results presented here. In the second segment of the article, some common coupled fixed point results are derived from our main results. In the last segment, we investigate the solution of integral equation as an application. Our results generalize, extend and improve several well-known results of the existing literature.

키워드

참고문헌

  1. S.A. Al-Mezel, H. Alsulami, E. Karapinar & A. Roldan: Discussion on multidimensional coincidence points via recent publications. Abstr. Appl. Anal. 2014 (2014), Article ID 287492. https://doi.org/10.1155/2014/287492
  2. T.G. Bhaskar & V. Lakshmikantham: Fixed point theorems in partially ordered metric spaces and applications. Nonlinear Anal. 65 (2006), no. 7, 1379-1393. https://doi.org/10.1016/j.na.2005.10.017
  3. B.S. Choudhury & A. Kundu: A coupled coincidence point results in partially ordered metric spaces for compatible mappings. Nonlinear Anal. 73 (2010), 2524-2531. https://doi.org/10.1016/j.na.2010.06.025
  4. B.S. Choudhury & A. Kundu: (ψ, α, β)-weak contractions in partially ordered metric spaces. Appl. Math. Lett. 25 (2012), no. 1, 6-10. https://doi.org/10.1016/j.aml.2011.06.028
  5. B.S. Choudhury, N. Metiya & M. Postolache: A generalized weak contraction principle with applications to coupled coincidence point problems. Fixed Point Theory Appl. 2013 (2013), Paper No. 152. https://doi.org/10.1186/1687-1812-2013-152
  6. B. Deshpande & A. Handa: Coincidence point results for weak ψ - ϕ contraction on partially ordered metric spaces with application. Facta Universitatis Ser. Math. Inform. 30 (2015), no. 5, 623-648.
  7. B. Deshpande & A. Handa: On coincidence point theorem for new contractive condition with application. Facta Universitatis Ser. Math. Inform. 32 (2017), no. 2, 209-229. https://doi.org/10.22190/FUMI1702209D
  8. B. Deshpande & A. Handa: Utilizing isotone mappings under Geraghty-type contraction to prove multidimensional fixed point theorems with application. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 25 (2018), no. 4, 279-95. https://doi.org/10.7468/jksmeb.2018.25.4.279
  9. B. Deshpande & A. Handa: Application of generalized weakly compatibility in common fixed point results on fuzzy metric spaces. J. Fuzzy Math. 28 (2020), no. 1, 145-162.
  10. B. Deshpande, A. Handa & C. Kothari: Existence of coincidence point under generalized nonlinear contraction on partially ordered metric spaces. J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 23 (2016), no. 1, 35-51. http://dx.doi.org/10.7468/jksmeb.2016.23.1.35
  11. B. Deshpande, A. Handa & S.A. Thoker: Existence of coincidence point under generalized nonlinear contraction with applications. East Asian Math. J. 32 (2016), no. 3, 333-354. http://dx.doi.org/10.7858/eamj.2016.025
  12. I.M. Erhan, E. Karapinar, A. Roldan & N. Shahzad: Remarks on coupled coincidence point results for a generalized compatible pair with applications. Fixed Point Theory Appl. 2014 (2014), Paper No. 207. http://dx.doi.org/10.1186/1687-1812-2014-207
  13. D. Guo & V. Lakshmikantham: Coupled fixed points of nonlinear operators with applications. Nonlinear Anal. 11 (1987) no. 5, 623-632. https://doi.org/10.1016/0362-546X(87)90077-0
  14. A. Handa, R. Shrivastava & V. K. Sharma: Coincidence point results for contraction mapping principle on partially ordered metric spaces with application to ordinary differential equations. Adalaya J. 8 (2019), no. 9, 734-754.
  15. J. Harjani & K. Sadarangani: Generalized contractions in partially ordered metric spaces and applications to ordinary differential equations. Nonlinear Anal. 72 (2010), no. 3-4, 1188-1197. https://doi.org/10.1016/j.na.2009.08.003
  16. J. Harjani, B. Lopez & K. Sadarangani: Fixed point theorems for mixed monotone operators and applications to integral equations. Nonlinear Anal. 74 (2011), 1749-1760. https://doi.org/10.1016/j.na.2010.10.047
  17. N. Hussain, M. Abbas, A. Azam & J. Ahmad: Coupled coincidence point results for a generalized compatible pair with applications. Fixed Point Theory Appl. 2014 (2014), Paper No. 62. https://doi.org/10.1186/1687-1812-2014-62
  18. G. Jungck & B.E. Rhoades: Fixed point for set-valued functions without continuity. Indian J. Pure Appl. Math. 29 (1998), no. 3, 227-238.
  19. V. Lakshmikantham & L. Ciric: Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces. Nonlinear Anal. 70 (2009), no. 12, 4341-4349. https://doi.org/10.1016/j.na.2008.09.020
  20. N.V. Luong & N.X. Thuan: Coupled fixed points in partially ordered metric spaces and application. Nonlinear Anal. 74 (2011), 983-992. https://doi.org/10.1016/j.na.2010.09.055
  21. B. Samet, E. Karapinar, H. Aydi & V. C. Rajic: Discussion on some coupled fixed point theorems. Fixed Point Theory Appl. 2013 (2013), Paper No. 50. https://doi.org/10.1186/1687-1812-2013-50