DOI QR코드

DOI QR Code

IDEAL THEORY OF SUBTRACTION SEMIGROUPS BASED ON (3, 2)-FUZZY SETS

  • Received : 2022.01.16
  • Accepted : 2023.07.10
  • Published : 2023.08.31

Abstract

In this paper, we define the notions of (3, 2)-fuzzy ideal of subtraction semigroup and near subtraction semigroup. Also, we discuss some of its properties with examples.

Keywords

Acknowledgement

The authors are highly grateful to the referees for their valuable comments and suggestions for improving the paper.

References

  1. J.C. Abbott: Sets, Lattices and Boolean Algebras. Allyn and Bacon, Boston, 1969.
  2. B. Ahmad & A. Kharal: On fuzzy soft sets. Advances in Fuzzy Systems 2009, Article ID 586507, 6 pages, 2009. https://doi.org/10.1155/2009/586507
  3. K.T. Atanassov: Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20 (1986), no. 1, 87-96. https://doi.org/10.1016/S0165-0114(86)80034-3
  4. K.T. Atanassov: New operations defined over the intuitionistic fuzzy sets. Fuzzy Sets and Systems 61 (1994), 137-142. https://doi.org/10.1016/0165-0114(94)90229-1
  5. M. Atef, M.I. Ali & T.M. Al-shami: Fuzzy soft covering based multi-granulation fuzzy rough sets and their applications. Computational and Applied Mathematics 40 (2021), no. 4, 115. https://doi.org/10.1007/s40314-021-01501-x
  6. N. Cagman, S. Enginoglu & F. Citak: Fuzzy soft set theory and its application. Iranian Journal of Fuzzy Systems 8 (2011), no. 3, 137-147. 10.22111/IJFS.2011.292
  7. H. Garg & S. Singh: A novel triangular interval type-2 intuitionistic fuzzy set and their aggregation operators. Iranian Journal of Fuzzy Systems 15 (2018), 69-93. 10.22111/IJFS.2018.4159
  8. H. Garg & K. Kumar: An advanced study on the similarity measures of intuitionistic fuzzy sets based on the set pair analysis theory and their application in decision making. Soft Computing 22 (2018), no. 15, 4959-4970. https://doi.org/10.1007/s00500-018-3202-1
  9. H. Garg & K. Kumar: Distance measures for connection number sets based on set pair analysis and its applications to decision-making process. Applied Intelligence 48 (2018), no. 10, 3346-3359. https://doi.org/10.1007/s10489-018-1152-z
  10. A. Iampan: A new branch of the logical algebra: UP-algebras. J. Algebra Relat. Top. 5 (2017), no. 1, 35-54. 10.22124/JART.2017.2403
  11. H.Z. Ibrahim, T.M. Al-shami & O.G. Elbarbary: (3, 2)-fuzzy sets and their applications to topology and optimal choice. Computational Intelligence and Neuroscience 2021, Article ID 1272266, 14 pages. https://doi.org/10.1155/2021/1272266
  12. Y.B. Jun, G. Muhiuddin & S.A. Romano: On filters in UP-algebras, A review and some new reflections. J. Int. Math. Virtual Inst. 11 (2021), no. 1, 35-52. DOI: 10.7251/JIMVI2101035J
  13. Y.B. Jun, H.S. Kim & E.H. Roh: Ideal theory of subtraction algebras. Scientiae Mathematicae Japonicae 61 (2005), no. 3, 459-464.
  14. Y.B. Jun & H.S. Kim: On ideals in subtraction algebras. Scientiae Mathematicae Japonicae 65 (2007), no. 1, 129-134.
  15. K.J. Lee & C.H. Park: Some questions on fuzzifications of ideals in subtraction algebras. Communications of the Korean Mathematical Society 22 (2007), no. 3, 359-363. 10.4134/CKMS.2007.22.3.359
  16. S.M. Mostafa, M.A.A. Naby & M.M.M. Yousef: Fuzzy ideals of KU-algebras. Int. Math. Forum 63 (2011), 3139-3149.
  17. B.M. Schein: Difference Semigroups. Communications in Algebra 20 (1992), 2153-2169. https://doi.org/10.1080/00927879208824453
  18. T. Senapati & R.R. Yager: Fermatean fuzzy sets. Journal of Ambient Intelligence and Humanized Computing 11 (2020), no. 2, 663-674. https://doi.org/10.1007/s12652-019-01377-0
  19. J. Somjanta, N. Thuekaew, P. Kumpeangkeaw & A. Iampan: Fuzzy sets in UP-algebras. Ann. Fuzzy Math. Inform. 12 (2016), 739-756.
  20. R.R. Yager: Pythagorean fuzzy subsets. in Proceedings of the 2013 joint IFSA world congress and NAFIPS annual meeting (IFSA/NAFIPS), 57-61, IEEE, Edmonton, Canada, 2013. 10.1109/IFSA-NAFIPS.2013.6608375
  21. L.A. Zadeh: Fuzzy sets. Information and Control 8 (1965), no. 3, 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X