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IDEAL THEORY OF SUBTRACTION SEMIGROUPS BASED ON
(3, 2)-FUZZY SETS

Bijan Davvaz a, John Britto Princivishvamalar b,
Neelamegarajan Rajesh b, ∗ and Balasubramaniyan Brundha c

Abstract. In this paper, we define the notions of (3, 2)-fuzzy ideal of subtraction
semigroup and near subtraction semigroup. Also, we discuss some of its properties
with examples.

1. Introduction

The concept of fuzzy sets was proposed by Zadeh [21]. The theory of fuzzy sets
has several applications in real-life situations, and many scholars have researched
fuzzy set theory. After the introduction of the concept of fuzzy sets, several re-
search studies were conducted on the generalizations of fuzzy sets. The integration
between fuzzy sets and some uncertainty approaches such as soft sets and rough
sets has been discussed in [2, 5, 6]. The idea of intuitionistic fuzzy sets suggested
by Atanassov [3] is one of the extensions of fuzzy sets with better applicability.
Applications of intuitionistic fuzzy sets appear in various fields, including medical
diagnosis, optimization problems, and multicriteria decision making [7, 8, 9]. Yager
[20] offered a new fuzzy set called a Pythagorean fuzzy set, which is the generaliza-
tion of intuitionistic fuzzy sets. Fermatean fuzzy sets were introduced by Senapati
and Yager [18], and they also defined basic operations over the Fermatean fuzzy
sets. The concept of (3, 2)-fuzzy sets are introduced and studied in [11]. There are
several generalizations of fuzzy sets such as Intuitionistic fuzzy sets, Pythagorean
fuzzy sets and Fermatean fuzzy sets. The concept of (3,2)-fuzzy sets is a generaliza-
tion of intuitionistic fuzzy sets. This type produces membership grades larger than
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Intutionistic and Pythagorean fuzzy sets. In this paper, we introduce the concept
of (3, 2)-fuzzy ideals of subtraction algebras and obtain several characterizations of
(3, 2)-fuzzy ideals in subtraction algebras.

2. Preliminaries

In this section, we shall recall some basic definitions and results that are required
in the sequel.

A subtraction algebra is defined as an algebra (X,−) with a single binary oper-
ation that satisfies the following identities:

(∀x, y, z ∈ X)(x− (y − x) = x),(2.1)

(∀x, y, z ∈ X)(x− (x− y) = y − (y − x)),(2.2)

(∀x, y, z ∈ X)((x− y)− z = (x− z)− y).(2.3)

The last identity permits us to omit parentheses in expressions of the form (x−y)−z.
The subtraction determines an order relation on X a ≤ b ⇔ a−b = 0, where 0 = a−a

is an element that does not depend on the choice of a ∈ X. The ordered set (X,≤)
is a semi-Boolean algebra in the sense of [1], that is, it is a meet semilattice with
zero 0 in which every interval [0, a] is a Boolean algebra with respect to the induced
order. Here a∧b = a−(a−b), the complement of an element b ∈ [0, a] is a−b; and if
b, c ∈ [0, b], then b∨c = (b′∧c′)′ = a−((a−b)∧(a−c)) = a−((a−b)−((a−b)−(a−c))).
In a subtraction algebra X, the following are true: [13]

(∀x, y ∈ X)((x− y)− y = x− y),(2.4)

(∀x ∈ X)(x− 0 = x, 0− x = 0),(2.5)

(∀x, y ∈ X)((x− y)− x = 0),(2.6)

(∀x, y ∈ X)(x− (x− y) ≤ y),(2.7)

(∀x, y, z ∈ X)((x− y)− (y − x) = x− y),(2.8)

(∀x, y ∈ X)(x− (x− (x− y)) = x− y),(2.9)

(∀x, y, z ∈ X)((x− y)− (z − y) ≤ x− z),(2.10)

(∀x, y ∈ X)(x ≤ y ⇔ x = y − w for some w ∈ X),(2.11)

(∀x, y, z ∈ X)(x ≤ y ⇒ x− z ≤ y − z, z − y ≤ z − x),(2.12)

(∀x, y, z ∈ X)(x, y ≤ z ⇒ x− y = x ∧ (z − y)).(2.13)
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Definition 2.1 ([13]). A non-empty subset A of a subtraction algebra X is called
an ideal of X if it satisfies

(1) a− x ∈ A for all a ∈ A and x ∈ X,
(2) for all a, b ∈ A, whenever a ∨ b exists in X, then a ∨ b ∈ A.

Proposition 2.2 ([13]). Let X be a subtraction algebra and let x, y ∈ X. If w ∈ X

is an upper bound for x and y, then the element x∨ y = w− ((w− y)− x) is a least
upper bound for x and y.

Definition 2.3. For any t ∈ [0, 1], and a fuzzy set f in a non-empty set S, the
set U(f, t) = {x ∈ S : f3(x) ≥ t} is called an upper t-level cut of f and the set
L(f, t) = {x ∈ S : f3(x) ≤ t} is called a lower t-level cut of f .

Definition 2.4 ([15]). A fuzzy set f in a subtraction algebra X is called a fuzzy
ideal of X if it satisfies:

(∀x, y ∈ X)(f(x− y) ≥ f(x)),(2.14)

(∀ x, y ∈ X)
(

x ∨ y ⇒ f(x ∨ y) ≥ min{f(x), f(y)} )
(2.15)

Definition 2.5 ([11]). Let X be a nonempty set. The (3, 2)-fuzzy set on X is
defined to be a structure

CX := {〈x, f(x), g(x)〉 | x ∈ X}(2.16)

where f : X → [0, 1] is the degree of membership of x to C and g : X → [0, 1] is the
degree of non-membership of x to C such that 0 ≤ (f(x))3 + (g(x))2 ≤ 1.

In what follows, we use the notations f3(x) and g2(x) instead of (f(x))3 and
(g(x))2, respectively, and the (3, 2)-fuzzy set in (2.16) is simply denoted by CX :=
(X, f, g).

3. Ideals in Subtraction Semigroups

In this section X denotes subtraction semigroup.

Definition 3.1. A (3, 2)-fuzzy set CX := (X, f, g) of X is called (3, 2)-fuzzy subtrac-
tion sub-semigroup of X if

(∀ x, y ∈ X)
(

f3(x− y) ≥ min{f3(x), f3(y)}
g2(x− y) ≤ max{g2(x), g2(y)}

)
(3.1)
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− 0 a b c

0 0 a b c
a 0 0 b c
b 0 a 0 c
c 0 a b 0

· 0 a b c

0 0 a b c
a 0 0 b c
b 0 a 0 c
c 0 a b 0

Example 1. Let X = {0, a, b, c} be a subtraction sub-semigroup with two binary
operations − and · is defined as follows.
We define a (3, 2)-fuzzy set CX := (X, f, g) as follows:

X 0 1 2 3
f 0.8 0.1 0.3 0.2
g 0.4 0.9 0.6 0.8

Then C is a (3, 2)-fuzzy subtraction semi-group of X. Hence CX := (X, f, g) is a
subtraction sub-semigroup of X.

Definition 3.2. A (3, 2)-fuzzy set CX := (X, f, g) of X is called (3, 2)-fuzzy left ideal
(resp. (3, 2)-fuzzy right ideal) of X, if ∀ x, y ∈ X

(1) f3(x) ≥ min{f3(x− y), f3(y)}
(2) g2(x) ≤ max{g2(x− y), g2(y)}
(3) f3(xy) ≥ min{f3(x), f3(y)}
(4) g2(xy) ≤ max{g2(x), g2(y)}
(5) f3(xy) ≥ f3(y) (resp. f3(xy) ≥ f3(x))
(6) g2(xy) ≤ g2(y) (resp. g2(xy) ≤ g2(x)).

If f and g are both (3, 2)-fuzzy left ideal and (3, 2)-fuzzy right ideal of X, then f

and g are both (3, 2)-fuzzy ideal of X.

Example 2. Let X = {0, a, b, c} be a subtraction sub-semigroup with two binary
operations − and · is defined as follows.

− 0 a b c

0 0 a b c
a 0 0 b c
b 0 a 0 c
c 0 a b 0

· 0 a b c

0 0 a b c
a 0 0 b c
b 0 a 0 c
c 0 a b 0

We define a (3, 2)-fuzzy set CX := (X, f, g) as follows:
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X 0 a b c
f(x) 0.71 0.32 0.53 0.14
g(x) 0.31 0.72 0.53 0.84

Then C is a (3, 2)-fuzzy left (resp.(3, 2)-fuzzy right) ideal of X. Hence CX := (X, f, g)
is a (3, 2)-fuzzy left ideal ((3, 2)-fuzzy right ideal) of X.

Definition 3.3. Let C1 = (f1, g1) and C2 = (f2, g2) be any two (3, 2)-fuzzy sets of
X. Then the following (3, 2)-fuzzy sets of X are defined as follows.

(C1 ? C2)(z) =





(f3
1 ? f3

2 )(z) =

{ ∨
z≤xy

min{f3
1 (x), f3

1 (y)} if z ≤ xy

[0, 0] otherwise

(g2
1 ? g2

2)(z) =

{ ∧
z≤xy

min{g2
2(x), g2

2(y)} if z ≤ xy

[1, 1] otherwise

(C1 ∩ C2)(x) =
{

(f3
1 ∩ f3

2 )(x)
.(g2

1 ∪ g2
2)(x) ∀x ∈ X

(C1−C2)(z) =





(f3
1 − f3

2 )(z) =

{ ∨
z=x−y

min{f3(x), f3(y)} if z = x− y ∀ x, y, z ∈ X

[0, 0] otherwise

(g2
1 − g2

2)(z) =

{ ∧
z=x−y

min{g2(x), g2(y)} if z = x− y ∀ x, y, z ∈ X

[1, 1] otherwise

Theorem 3.4. Every (3, 2)-fuzzy left ideal (resp. (3, 2)-fuzzy right ideal) of X is a
(3, 2)-fuzzy subtraction semi-group of X.

Proof. Let f and g be an (3, 2)-fuzzy ideal of X. Then ∀x, y, z ∈ X, we have

f3(x− y) ≥ min{f3((x− y)− z), f3(z)} ∀z ∈ X
≥ min{f3((x− y)− z), f3(x)} for z = x
= min{f3(0), f3(x)}
= f3(x),

g2(x− y) ≤ max{g2((x− y)− z), g2(r)} ∀z ∈ X
≤ max{g2((x− y)− z), g2(x)} for z = x
= max{g2(0), g2(x)}
= g2(x).

Again consider

f3(x− y) ≥ min{f3((x− y)− z), f3(l)} ∀z ∈ X
≥ min{f3((x− y)− y), f3(y)} for z = y
= min{f3(x− y), f3(y)} since (x− y)− y = x− y
= min{f3(x), f3(y)},
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g2(x− y) ≤ max{g2((x− y)− z), g2(l)} ∀z ∈ X
≤ max{g2((x− y)− y), g2(y)} for z = y
= max{g2(x− y), g2(y)} since (x− y)− y = x− y
= max{g2(x), g2(y)}.

Then f and g are (3, 2)-fuzzy subtraction semi-group of X. The converse is not
true. ¤

Theorem 3.5. If CX := (X, f, g) is a (3, 2)-fuzzy set of a sub-semigroup X, then
the following conditions are equivalent:

(∀x, y ∈ X)
(

f3 ∗ f3 ≤ f3, g2 ∗ g2 ≥ g2
)

(3.2)

(∀x, y ∈ X)
(

f3(xy) ≥ min{f3(x), f3(y)},
g2(xy) ≤ max{g2(x), g2(y)}}

)
.(3.3)

Proof. (3.2)⇒ (3.3): Let x, y ∈ X. Then (f3∗f3)(jk) =
∨

xy≤jk

{min{f3(j), f3(k)}} ≥
min{f3(x), f3(y)}. By (3.2), f3 ∗ f3 ≤ f3. Then we have f3(xy) ≥ (f3 ∗ f3)(xy) ≥
min{f3(x), f3(y)}. Hence f3(xy) ≥ min{f3(x), f3(y)}. It is clear that (g2∗g2)(jk) =∧
xy≤jk

{max{g2(j), g2(k)}} ≤ max{g2(x), g2(y)}. By (3.2), g2 ∗ g2 ≥ g2. g2(xy) ≤
(g2 ∗ g2)(xy) ≤ max{g2(x), g2(y)}. Hence g2(xy) ≤ max{g2(x), g2(y)}.
(3.3) ⇒ (3.2): Let j ∈ X. Consider (f3 ∗ f3)(j) =

∨
j≤xy

min{f3(x), f3(y)} ≤
∨

j≤xy
{f3(xy)} ≤ ∨

j≤xy
{f3(j)} = f3(j). Thus f3 ∗ f3 ≤ f3. If j cannot be expressed

as j ≤ xy, then (f3 ∗ f3)(x) = 0 ≤ f3(j). Thus (f3 ∗ f3)(j) ≤ f3(j) ∀j ∈ X.
Let j ∈ X. Consider (g2 ∗ g2)(j) =

∨
j≤xy

max{g2(x), g2(y)} ≥ ∨
j≤xy

{g2(xy)} ≥
∨

j≤xy
{g2(j)} = g2(j). Thus g2 ∗ g2 ≥ g2. If j cannot be expressed as j ≤ ab,

then (g2 ∗ g2)(x) = 0 ≥ g2(j). Thus (g2 ∗ g2)(j) ≥ g2(j) ∀j ∈ X. This implies that
f3 ∗ f3 ≤ f and g2 ∗ g2 ≥ g2. ¤

Theorem 3.6. Let CX := (X, f, g) be a (3, 2)-fuzzy set of X. If CX := (X, f, g) is a
(3, 2)-fuzzy sub-semigroup ((3, 2)-fuzzy left ideal, (3, 2)-fuzzy right ideal) of X. Then
f − f = f and g − g = g.

Proof. Let CX := (X, f, g) be a (3, 2)-fuzzy sub-semigroup of X. Let x, y, x ∈ X.
Then

(f − f)3(z) =
∨

z=x−y
{min{f3(x), f3(y)}}

≥ min{f3(z), f3(0)} since z = z − 0
= f3(z),
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(g − g)2(z) =
∨

z=x−y
{max{g2(x), g2(y)}}

≤ max{g2(z), g2(0)} since z = z − 0
= g2(z).

On the other hand if z = x− y, x, y ∈ X, then

f3(z) = f3(x− y)
≥ min{f3(x), f3(y)}
≥ ∨

z=x−y
{min{f3(x), f3(y)}}

= (f − f)3(z),

g2(z) = g2(x− y)
≤ max{g2(x), g2(y)}
≤ ∨

j=x−y
{max{g2(x), g2(y)}}

= (g − g)2(z).

Hence f3(z) = (f − f)3(z) and g2(z) = (g − g)2(z) ∀z ∈ X. Thus f3 = f3 − f3 and
g2 = g2 − g2. ¤

Theorem 3.7. Let C1 = (f1, g1) and C2 = (f2, g2) be any two (3, 2)-fuzzy sets of X.
If C1 and C2 are (3, 2)-fuzzy left ideals (resp. (3, 2)-fuzzy right ideals) of X. Then
C1 and C2 is also (3, 2)-fuzzy left ideal (resp. (3, 2)-fuzzy right ideal) of X.

Proof. Let C1 and C2 be any two (3, 2)-fuzzy left ideals of X. Let x, y ∈ X. Consider

(f3
1 ∩ f3

2 )(xy) = min{f3
1 (xy), f3

2 (xy)}
≥ min{min{f3

1 (x), f3
1 (y)}, min{f3

2 (x), f3
2 (y)}}

≥ min{min{f3
1 (x), f3

2 (x)},min{f3
1 (y), f3

2 (y)}}
= min{(f3

1 ∩ f3
2 )(x), (f3

1 ∩ f3
2 )(y)},

(f3
1 ∩ f3

2 )(xy) = min{f3
1 (xy), f3

2 (xy)}
≥ min{f3

1 (y), f3
2 (y)}

= (f3
1 ∩ f3

2 )(y).

(g2
1 ∪ g2

2)(xy) = max{g2
1(xy), g2

2(xy)}
≤ max{max{g2

1(x), g2
1(y)}, max{g2

2(x), g2
2(y)}}

≤ max{max{g2
1(x), g2

2(x)},max{g2
1(y), g2

2(y)}
= max f3(g2

1 ∪ g2
2)(x), (g2

1 ∪ g2
2)(y)},

(g2
1 ∪ g2

2)(xy) = max{g2
1(xy), g2

2(xy)}
≤ max{g2

1(y), g2
2(y)}

= (g2
1 ∪ g2

2)(y).
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And
(f3

1 ∩ f3
2 )(x) = min{f3

1 (x), f3
2 (x)}

≥ min{min{f3
1 (x− y), f3

1 (y)}, min{f3
2 (x− y), f3

2 (y)}}
≥ min{min{f3

1 (x− y), f3
2 (x− y)},min{f3

1 (y), f3
2 (y)}}

= min{(f3
1 ∩ f3

2 )(x− y), (f3
1 ∩ f3

2 )(y)},
(g2

1 ∪ g2
2)(x) = max{g2

1(x), g2
2(x)}

≤ max{max{g2
1(x− y), g2

1(y)}, max{g2
2(x− y), g2

2(y)}}
≤ max{max{g2

1(x− y), g2
2(x− y)},max{g2

1(y), g2
2(y)}}

= max{(g2
1 ∪ g2

2)(x− y), (g2
1 ∪ g2

2)(y)}.
Hence the intersection of two (3, 2)-fuzzy left ideals of X is also (3, 2)-fuzzy left ideal
of X. ¤

Theorem 3.8. If Ci = (fi, gi)i∈∆ is a family of (3, 2)-fuzzy left ideal (resp. (3, 2)-
fuzzy right ideal) of a sub-semigroup X. Then

⋂
i∈∆

Ci = (
⋂

i∈∆

f3
i ,

⋃
i∈∆

g2
i ) is also a

(3, 2)-fuzzy left ideal (resp. (3, 2)-fuzzy right ideal) of X, where ∆ is any index set.

Proof. Let Ci = (fi, gi)i∈∆ be a family of (3, 2)-fuzzy left ideal (resp. (3, 2)-fuzzy right
ideal) of X. Let x, y ∈ X and f3(x) =

⋂
i∈∆

f3
i (x) =

∧
f3

i (x), g2(x) =
⋃

i∈∆

g2
i (x) =

∨
g2
i (x).

f3(x) =
∧

f3
i (x)

≥ ∧
min{f3

i (x− y), f3
i (y)}

= min{∧ f3
i (x− y),

∧
f3

i (y)}
= min{f3

i (x− y), f3
i (y)}

= min{f3(x− y), f3(y)},
g2(x) =

∨
g2
i (x)

≤ ∨
max{g2

i (x− y), g2
i (y)}

= max
∨{g2

i (x− y),
∨

g2
i (y)}

= max{∪g2
i (x− y),∪g2

i (y)}
= max{g2(x− y), g2(y)},

f3(xy) =
∧

f3
i (xy)

≥ ∧
min{f3

i (x), f3
i (y)}

= min{∧ f3
i (x),

∧
f3

i (y)}
= min{f3

i (x), f3
i (y)}

= min{f3(x), f3(y)},
g2(xy) =

∨
g2
i (xy)

≤ ∨
max{g2

i (x), g2
i (y)}

= max{∨ g2
i (x),

∨
g2
i (y)}

= max{∪g2
i (x),∪g2

i (y)}
= max{g2(x), g2(y)},
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f3(xy) =
∧

f3
i (xy) ≥ ∧

f3
i (y) ≥ f3(y) and g2(xy) =

∨
g2
i (xy) ≤ ∨

g2
i (y) ≤ g2(y).

Hence,
⋂

i∈∆

Ci = (
⋂

i∈∆

fi,
⋃

i∈∆

gi) is also a (3, 2)-fuzzy left ideal (resp. (3, 2)-fuzzy right

ideal) of X. ¤

Theorem 3.9. If CX := (X, f, g) is any (3, 2)-fuzzy set of a sub-semigroup X, then
CX := (X, f, g) is a (3, 2)-fuzzy left ideal (resp. (3, 2)-fuzzy right ideal) of X if and
only if every (3, 2)-fuzzy level set

⋃
(CX , t, n) is a left ideal (resp. right ideal) of X

when it is non-empty.

Proof. Suppose that CX := (X, f, g) is a (3, 2)-fuzzy left ideal (resp. (3, 2)-fuzzy
right ideal) of X. Let x, y, x − y ∈ ⋃

(CX , t, n) ∀t ∈ [0, 1] and n ∈ [0, 1]. Then
f3(x) ≥ t, f3(x − y) ≥ t, f3(y) ≥ t and g2(x) ≤ n, g2(x − y) ≤ n, g2(y) ≤ n.
Suppose y, x− y ∈ ⋃

(CX , t, n). Then f3(x) ≥ min{f3(x− y), f3(y)} ≥ min{t, t} = t

and g2(x) ≤ max{g2(x − y), g2(y)} ≤ max{n, n} = n. Hence xy ∈ ⋃
(CX , t, n).

Suppose x, y ∈ ⋃
(CX , t, n). Then f3(xy) ≥ min{f3(x), f3(y)} ≥ min{t, t} = t and

g2(xy) ≤ max{g2(x), g2(y)} ≤ max{n, n} = n. Hence xy ∈ ⋃
(CX , t, n). Let x ∈ X

and y ∈ ⋃
(CX , t, n). Then f3(xy) ≥ f3(y) ≥ t and g2(xy) ≤ g2(y) ≤ n. This implies

that xy ∈ ⋃
(CX , t, n). Hence

⋃
(CX , t, n) is a left ideal of X. Conversely, let t ∈ [0, 1]

and n ∈ [0, 1] be such that
⋃

(CX , t, n) 6= 0 and
⋃

(CX , t, n) is a left ideal (right ideal)
of X. Suppose f3(x) � min{f3(x − y), f3(y)} or g2(x) � max{g2(x − y), g2(y)}.
If f3(x) � min{f3(x − y), f3(y)}, then there exists t ∈ [0, 1] such that f3(x) <

t < min{f3(x − y), f3(y)}; hence x − y, y ∈ (CX , t, max{g2(x − y), g2(y)}) but x /∈⋃
(CX , t, max{g2(x − y), g2(y)}), a contradiction. If g2(x) � max{g2(x− y), g2(y)},

then there exists n ∈ [0, 1] such that g2(x) > n > max{g2(x − y), g2(y)}, hence
x − y, y ∈ ⋃

(CX ,min{f3(x − y), f3(y)}, n) but x /∈ ⋃
(CX , min{f3(x − y), f3(y)}),

a contradiction. Hence f3(x) ≥ min{f3(x − y), f3(y)} and g2(x) ≤ max{g2(x −
y), g2(y)}. Suppose f3(xy) � min{f3(x), f3(y)} or g2(xy) � max{g2(x), g2(y)}.
If f3(xy) � min{f3(x), f3(y)}, then there exists t ∈ [0, 1] such that f3(xy) <

t < min{f3(x), f3(y)}, hence we have x, y ∈ ⋃
(CX , t, max{g2(x), g2(y)}) but xy /∈⋃

(CX , t, max{g2(x), g2(y)}), a contradiction. If g2(xy) � max{g2(x), g2(y)}, then
there exists n ∈ [0, 1] such that g2(xy) > n > max{g2(x), g2(y)}, hence x, y ∈⋃

(CX , min{f3(x), f3(y)}, n) but xy /∈ ⋃
(CX ,min{f3(x), f3(y)}), which is contradic-

tion. Hence f3(xy) ≥ min{f3(x), f3(y)} and g2(xy) ≤ max{g2(x), g2(y)}. Suppose
f3(xy) � f3(y) or g2(xy) � g2(y). If f3(xy) � f3(y), then there exists t ∈ [0, 1]
such that f3(xy) < t < f3(y), hence y ∈ ⋃

(CX , t, g2(y)) but xy /∈ ⋃
(CX , t, g2(y)), a

contradiction. If g2(xy) � g2(y), then there exists n ∈ [0, 1] such that g2(xy) > n >
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g2(y), hence y ∈ ⋃
(CX , f3(y), n) but xy /∈ ⋃

(CX , f3(y), n), a contradiction. Hence,
f3(xy) ≥ f3(y) and g2(xy) ≤ g2(y). Therefore, CX := (X, f, g) is a (3, 2)-fuzzy left
ideal (resp. (3, 2)-fuzzy right ideal) of X. ¤

4. (3, 2)-Fuzzy Ideal of Near-subtraction Semigroup

Definition 4.1. Let X be a near-subtraction semigroup. A (3, 2)-fuzzy set CX :=
(X, f, g) is called a (3, 2)-fuzzy ideal of X, if

(1) f3(x− y) ≥ min{f3(x), f3(y)} and g2(x− y) ≤ max{g2(x), g2(y)},
(2) f3(xj − x(y − j)) ≥ f3(j) and g2(xj − x(y − j)) ≤ g2(j),
(3) f3(xy) ≥ f3(x) and g2(xy) ≤ g2(x), ∀ j, x, y ∈ X.

If CX := (X, f, g) is a (3, 2)-fuzzy left ideal of X if it satisfies (1) and (2) and if
CX := (X, f, g) is a (3, 2)-fuzzy right ideal of X if it satisfies (1) and (3).

Theorem 4.2. If Ci = (fi, gi), i ∈ ∆ is a family of (3, 2)-fuzzy ideal of a near-
subtraction semigroup X, then

⋂
i∈∆

Ci = (
⋂

i∈∆

fi,
⋃

i∈∆

gi) is also a (3, 2)-fuzzy ideal of

X.

Proof. If {Ci}i∈∆ is a family of (3, 2)-fuzzy ideal of a near-subtraction semigroup
X. Let

⋂
fi(x) = (

∧
fi)(x) =

∧
fi(x) and

⋃
gi(x) = (

∨
gi)(x) =

∨
gi(x) for all

x, y ∈ X.
Let x, y ∈ X. Then

(
⋂

i∈∆

fi)3(x− y) =
∧

i∈∆

{f3
i (x− y)}

≥ ∧
i∈∆

min{f3
i (x), f3(y)}

= min{ ∧
i∈∆

{f3
i (x)}, ∧

i∈∆

{f3
i (y)}}

= min{( ⋂
i∈∆

fi)3(x), (
⋂

i∈∆

fi)3(y)},

(
⋃

i∈∆

gi)2(x− y) =
∨

i∈∆

{g2
i (x− y)}

≤ ∨
i∈∆

max{g2
i (x), g2(y)}

= max{ ∨
i∈∆

{g2
i (x)}, ∨

i∈∆

{g2
i (y)}}

= max{( ⋃
i∈∆

gi)2(x), (
⋃

i∈∆

gi)2(y)}.
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For all j, x, y ∈ X, we have

(
⋂

i∈∆

fi)3(xj − x(y − j)) =
∧

i∈∆

{f3
i (xj − x(y − j))}

≥ ∧
i∈∆

{f3
i (j)}

= (
⋂

i∈∆

fi)3(j),

(
⋃

i∈∆

gi)2(xj − x(y − j)) =
∨

i∈∆

{g2
i (xj − x(y − j))}

≤ ∨
i∈∆

{g2
i (j)}

= (
⋃

i∈∆

gi)2(j).

For all x, y ∈ X, we have

(
⋂

i∈∆

fi)3(xy) =
∧

i∈∆

{f3
i (xy)}

≥ ∧
i∈∆

{f3
i (x)}

= (
⋂

i∈∆

fi)3(x),

(
⋃

i∈∆

gi)2(xy) =
∨

i∈∆

{g2
i (xy)}

≤ ∨
i∈∆

{g2
i (x)}

= (
⋃

i∈∆

gi)2(x).

Hence
⋃

i∈∆

Ci = (
⋃

i∈∆

fi,
⋂

i∈∆

gi) is a (3, 2)-fuzzy ideal of X. ¤

Definition 4.3. A (3, 2)-fuzzy set CX := (X, f, g) of X is said to be a (3, 2)-fuzzy
bi-ideal of X if ∀x, y ∈ X

(1) f3(x− y) ≥ min{f3(x), f3(y)}
(2) g2(x− y) ≤ max{g2(x), g2(y)}
(3) (f3 ·X · f3) ∩ (f3 ·X) ∗ f3 ⊂ f3

(4) (g2 ·X · g2) ∪ (g2 ·X) ∗ g2 ⊃ g2.

Example 3. Let X = {0, a, b, c} be a subtraction sub-semigroup with two binary
operations − and · is defined as follows.

− 0 a b c

0 0 0 0 0
a a 0 a a
b b b 0 b
c c c c 0

∗ 0 a b c

0 0 0 0 0
a a a a a
b 0 0 0 b
c 0 0 0 c
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X 0 a b c

f 0.8 0.6 0.3 0.2
g 0.3 0.4 0.6 0.7

We define a (3, 2)-fuzzy set CX := (X, f, g) as follows: It is clear that

X 0 a b c

f3 ·X · f3 0.8 0.7 0.5 0.2
(f3 ·X) · f3 0.7 0.6 0.3 0.1
g2 ·X · g2 0.4 0.5 0.6 0.8

(g2 ·X) · g2 0.3 0.6 0.7 0.8

Proposition 4.4. If a (3, 2)-fuzzy set CX := (X, f, g) is a (3, 2)-fuzzy left ideal of
X, then CX := (X, f, g) is a (3, 2)-fuzzy bi-ideal of X.

Proof. Let j′ ∈ X be such that j′ = xyz = jl − j(k − l), where x, y, z, j, k, l ∈ X.
Then ((f3 ·X · f3) ∩ ((f3 ·X) · f3))(j′)

= min{(f3 ·X · f3)(j′), ((f3 ·X) · f3)(j′)}
= min{ ∨

j′=xyz

min{f3(x), f3(y), f3(z)}}, ∨
j′=jl−j(k−l)

min{(f3 ·X)(j), f3(l)}
= min{∨{f3(x), f3(z)},∨{(f3 ·X)(j), f3(l)}}
≤ min{X(x), X(z), X(j), f3(jl − j(k − l))}
= min{1, 1, 1, f3(jl − j(k − l))}
= f3(jl − j(k − l))
= f3(j′).

If j′ is not expressible as j′ = xyz = jl−j(k−l), then (f3 ·X ·f3)∩((f3 ·X)·f3)(j′) =
0 ≤ f3(j′). Then (f3 ·X · f3)∩ ((f3 ·X) · f3) ⊂ f3. Hence C is a (3, 2)-fuzzy bi-ideal
of X. And
((g2 ·X · g2) ∪ ((g2 ·X) · g2))(j′)

= max{(g2 ·X · g2)(j′), (g2 ·X) · g2)(j′)}
= max{ ∨

j′=xyz

max{g2(x), g2(y), g2(z)}}, ∨
j′=jl−j(k−l)

max{(g2 ·X)(j), g2(l)}
= max{max{g2(x), g2(z)}, max{(g2 ·X)(j), g2(l)}}
≥ max{X(x), X(z), X(j), g2(jl − j(k − l))}
= max{0, 0, 0, g2(jl − j(k − l))}
= g2(jl − j(k − l))
= g2(j′).

If j′ is not expressible as j′ = xyz = jl−j(k− l) then ((g2 ·X ·g2)∪(g2 ·X) ·g2)(j′) =
0 ≥ g2(j′). Then ((g2 ·X · g2)∪ (g2 ·X) · g2) ⊃ g2. Hence C is a (3, 2)-fuzzy bi-ideal
of X. ¤
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Proposition 4.5. If a (3, 2)-fuzzy set CX := (X, f, g) is a (3, 2)-fuzzy right ideal of
X, then CX := (X, f, g) is a (3, 2)-fuzzy bi-ideal of X.

Proof. Let j′ ∈ X be such that j′ = xy = jl−j(k−l), x = x1x2, where x, x1, x2, y, j, k

and l are in X. Consider,
((f3 ·X · f3) ∩ ((f3 ·X) · f3))(j′)

= min{(f3 ·X · f3)(j′), ((f3 ·X) · f3)(j′)}
= min{ ∨

j′=xyz

min{(f3 ·X)(x), f3(y)}, ((f3 ·X) · f3)(jl − j(k − l))}
= min{ ∨

j′=xyz

min{ ∨
j′=xyz

min{f3(x1), X(x2)}, f3(y)}, ((f3 ·X) · f3)(jl − j(k − l))}
= min{ ∨

j′=xyz

min{ ∨
j′=xyz

{f3(a1)}, f3(b)}, ((f3 ·X) · f3)(jl − j(k − l))}
= min{f3(x1), f3(y), ((f3 ·X) · f3)(jl − j(k − l))}
≤ min{f3(xy), 1, 1}
= f3(xy)
= f3(j′).

If j′ is not expressible as j′ = xyz = jl−j(k−l) then ((f3 ·X ·f3)∩((f3 ·X)·f3)(j′) =
0 ≤ f3(j′). Then (f3 ·X · f3)∩ ((f3 ·X) · f3) ⊂ f3. Hence C is a (3, 2)-fuzzy bi-ideal
of X. And
((g2 ·X · g2) ∪ ((g2 ·X) · g2))(j′)

= max{(g2 ·X · g2)(j′), ((g2 ·X) · g2)(j′)}
= max{ ∨

j′=xyz

max{(g2 ·X)(x), g2(y)}, ((g2 ·X) · g2)(jl − j(k − l))}
= max{ ∨

j′=xyz

max{ ∨
j′=xyz

max{g2(x1), X(x2)}, g2(y)}, ((g2 ·X) · g2)(jl − j(k − l))}
= max{ ∨

j′=xyz

max{ ∨
j′=xyz

{g2(x1)}, g2(y)}, ((g2 ·X) · g2)(jl − j(k − l))}
= max{g2(x1), g2(y), ((g2 ·X) · g2)(jl − j(k − l))}
≥ max{g2(xy), 1, 1}
= g2(xy)
= g2(j′).

If j′ is not expressible as j′ = xyz = jl−j(k− l) then ((g2 ·X ·g2)∪(g2 ·X) ·g2)(j′) =
0 ≤ g2(j′). Then ((g2 ·X · g2)∪ (g2 ·X) · g2) ⊂ g2. Hence D is a (3, 2)-fuzzy bi-ideal
of X. ¤

Theorem 4.6. Let CX := (X, f, g) be a (3, 2)-fuzzy subalgebra of X. If CXC ⊂ C,
then C is a (3, 2)-fuzzy bi-ideal of X.

Proof. Assume that f is a (3, 2)-fuzzy subalgebra of X and f3 · X · f3 ⊂ f3. Let
j ∈ X. Then ((f3 ·X ·f3)∩(f3 ·X) ·f3)(j) = min{(f3 ·X ·f3)(j), ((f3 ·X) ·f3)(j)} ≤
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(f3 ·X ·f3)(j) ≤ f3(j). Thus ((f3 ·X ·f3)∩ (f3 ·X) ·f3) ⊂ f3 and f is a (3, 2)-fuzzy
bi-ideal of X and assume that g is a (3, 2)-fuzzy subalgebra of X and g2 ·X ·g2 ⊃ g2.
Let j ∈ X. Then ((g2 ·X ·g2)∪(g2·X)·g2)(j) = max{(g2·X ·g2)(j), ((g2·X)·g2)(j)} ≥
(g2 ·X · g2)(j) ≥ g2(j). Thus ((g2 ·X · g2)∪ (g2 ·X) · g2) ⊃ g2 and g is a (3, 2)-fuzzy
bi-ideal of X. ¤

Theorem 4.7. If X is a zero symmetric near-subtraction semigroup and CX :=
(X, f, g) is a (3, 2)-fuzzy bi-ideal of X, then f3 ·X · f3 ⊂ f3 and g2 ·X · g2 ⊃ g2.

Proof. Let f be a (3, 2)-fuzzy bi-ideal of X. Then ((f3 · X · f3) ∩ (f3 · X) · f3) ⊂
f3. Clearly f3(0) ≥ f3(j). Thus (f3 · X)(0) ≥ (f3 · X)(j) ∀j ∈ X. Since X

is a zero symmetric near-subtraction semigroup, f3 · X · f3 ⊂ (f3 · X) · f3. So
((f3 · X · f3) ∩ (f3 · X) · f3) = f3 · X · f3 ⊂ f3, and let g be a (3, 2)-fuzzy bi-
ideal of X. Then ((g2 · X · g2) ∪ (g2 · X) · g2) ⊃ g2. Clearly g2(0) ≤ g2(j). Thus
(g2 · X)(0) ≤ (g2 · X)(j) ∀j ∈ X. Since X is a zero symmetric near-subtraction
semigroup, g2 ·X ·g2 ⊃ (g2 ·X)·g2. So ((g2 ·X ·g2)∪(g2 ·X)·g2) = g2 ·X ·g2 ⊃ g2. ¤

Theorem 4.8. If CX := (X, f, g) is a (3, 2)-fuzzy bi-ideal of a zero symmetric
near-subtraction semigroup X, then f3(jkl) ≥ min{f3(j), f3(l)} and g2(jkl) ≤
max{g2(j), g2(l)}.
Proof. Let f be a (3, 2)-fuzzy bi-ideal of zero symmetric near-subtraction semigroup
X. It follows that f3 ·X · f3 ⊂ f3 and g2 ·X · g2 ⊃ g2.
Let j, k, l ∈ X. Then

f3(jkl) ≥ (f3 ·X · f3)(jkl)
=

∨
jkl=xy

min{(f3 ·X)(x), f3(y)}
≥ min{(f3 ·X)(jk), f3(l)}
≥ min{(f3 ·X)(j), X(k), f3(l)}
= min{(f3 ·X)(j), 1, f3(l)}
= min{(f3 ·X)(j), f3(l)}
≥ min{f3(j), f3(l)},

g2(jkl) ≥ (g2 ·X · g2)(jkl)
=

∧
jkl=xy

max{(g2 ·X)(x), g2(y)}
≤ max{(g2 ·X)(jk), g2(l)}
≤ max{(g2 ·X)(j), X(k), g2(l)}
= max{(g2 ·X)(j), 1, g2(l)}
= max{(g2 ·X)(j), g2(l)}.
≤ max{g2(j), g2(l)}.

¤
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