DOI QR코드

DOI QR Code

Sinomonas terrae sp. nov., Isolated from an Agricultural Soil

  • Hyosun Lee (Department of Biological Science, College of Science and Engineering, Sangji University) ;
  • Ji Yeon Han (Department of Biological Science, College of Science and Engineering, Sangji University) ;
  • Dong-Uk Kim (Department of Biological Science, College of Science and Engineering, Sangji University)
  • Received : 2023.03.09
  • Accepted : 2023.04.07
  • Published : 2023.07.28

Abstract

While searching for the bacteria which are responsible for degradation of pesticide in soybean field soil, a novel bacterial strain, designated 5-5T, was isolated. The cells of the strain were Gram-staining-positive, aerobic and non-motile rods. Growth occurred at 10-42℃ (optimum, 30℃), pH 5.5-9.0 (optimum, pH 7.0-7.5), and 0-2% (w/v) NaCl (optimum, 1%). The predominant fatty acids were C15:0 anteiso, C17:0 anteiso, and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c). The predominant menaquinone was MK-9 (H2). Diphosphatidylglycerol, glycolipids, phosphatidylinositol, and phosphatidylglycerol were the major polar lipids. Phylogenetic analysis of 16S rRNA gene sequences indicated that strain 5-5T is a member of the genus Sinomonas and its closest relative is Sinomonas humi MUSC 117T, sharing a genetic similarity of 98.4%. The draft genome of strain 5-5T was 4,727,205 bp long with an N50 contig of 4,464,284 bp. Genomic DNA G+C content of strain 5-5T was68.0 mol%. The average nucleotide identity (ANI) values between strain 5-5T and its closest strains S. humi MUSC 117T and S. susongensis A31T were 87.0, and 84.3 % respectively. In silico DNA-DNA hybridization values between strain 5-5T and its closest strains S. humi MUSC 117T and S. susongensis A31T were 32.5% and 27.9% respectively. Based on the ANI and in silico DNA-DNA hybridization analyses, the 5-5T strain was considered as novel species belonging to the genus Sinomonas. On the basis of the results from phenotypic, genotypic and chemotaxonomic analyses, strain 5-5T represents a novel speciesof the genus Sinomonas, for which the name Sinomonas terrae sp. nov. is proposed. The type strain is 5-5T (=KCTC 49650T =NBRC 115790T).

Keywords

Acknowledgement

This work was supported by Rural Development Administration (Project No. PJ014897032023).

References

  1. Zhou Y, Wei W, Wang X, Lai R. 2009. Proposal of Sinomonas flava gen. nov., sp. nov., and description of Sinomonas atrocyanea comb. nov. to accommodate Arthrobacter atrocyaneus. Int. J. Syst. Evol. Microbiol. 59: 259-263. https://doi.org/10.1099/ijs.0.000695-0
  2. Ding L, Hirose T, Yokota A. 2009. Four novel Arthrobacter species isolated from filtration substrate. Int. J. Syst. Evol. Microbiol. 59: 856-862. https://doi.org/10.1099/ijs.0.65301-0
  3. Zhou Y, Chen X, Zhang Y, Wang W, Xu J. 2012. Description of Sinomonas soli sp. nov., reclassification of Arthrobacter echigonensis and Arthrobacter albidus (Ding et al. 2009) as Sinomonas echigonensis comb. nov. and Sinomonas albida comb. nov., respectively, and emended description of the genus Sinomonas. Int. J. Syst. Evol. Microbiol. 62: 764-769. https://doi.org/10.1099/ijs.0.030361-0
  4. Kuhn DA, Starr MP. 1960. Arthrobacter atrocyaneus, nov. sp., and its blue pigment. Arch. Mikrobiol. 36: 175-181. https://doi.org/10.1007/BF00412285
  5. Guo QQ, Ming H, Meng XL, Huang JR, Duan YY, Li S-H, et al. 2015. Sinomonas halotolerans sp. nov., an actinobacterium isolated from a soil sample. Antonie Van Leeuwenhoek 108: 887-895. https://doi.org/10.1007/s10482-015-0543-y
  6. Lee LH, Azman AS, Zainal N, Yin WF, Mutalib NS, Chan KG. 2015. Sinomonas humi sp. nov., an amylolytic actinobacterium isolated from mangrove forest soil. Int. J. Syst. Evol. Microbiol. 65: 996-1002. https://doi.org/10.1099/ijs.0.000053
  7. Prabhu DM, Quadri SR, Cheng J, Liu L, Chen W, Yang Y, et al. 2015. Sinomonas mesophila sp. nov., isolated from ancient fort soil. J. Antibiot. (Tokyo) 68: 318-321. https://doi.org/10.1038/ja.2014.161
  8. Zhang MY, Xie J, Zhang TY, Xu H, Cheng J, et al. 2014. Sinomonas notoginsengisoli sp. nov., isolated from the rhizosphere of Panax notoginseng. Antonie Van Leeuwenhoek 106: 827-835. https://doi.org/10.1007/s10482-014-0252-y
  9. Bao YY, Huang Z, Mao DM, Sheng XF, He LY. 2015. Sinomonas susongensis sp. nov., isolated from the surface of weathered biotite. Int. J. Syst. Evol. Microbiol. 65: 1133-1137. https://doi.org/10.1099/ijs.0.000064
  10. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
  11. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, et al. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequence and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67: 1613-1617. https://doi.org/10.1099/ijsem.0.001755
  12. Pruesse E, Peplies J, Glockner FO. 2012. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28: 1823-1829. https://doi.org/10.1093/bioinformatics/bts252
  13. Saitou N, Nei M. 1987. The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  14. Fitch WM. 1971. Toward defining course of evolution: minimum change for a specific tree topology. Syst. Zool. 20: 406-416. https://doi.org/10.2307/2412116
  15. Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874. https://doi.org/10.1093/molbev/msw054
  16. Kimura M. 1983. The Neutral Theory of Molecular Evolution., Cambridge: Cambridge University Press.
  17. Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17: 368-376. https://doi.org/10.1007/BF01734359
  18. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19: 455-477. https://doi.org/10.1089/cmb.2012.0021
  19. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44: 6614-6624. https://doi.org/10.1093/nar/gkw569
  20. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. 2017. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110: 1281-1286. https://doi.org/10.1007/s10482-017-0844-4
  21. Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14: 60.
  22. Smibert RM, Krieg NR. 1994. Phenotypic characterization. In Gerhardt P, Murra RGE, Wood WA, Krieg NR (eds.). Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology; pp. 607-654.
  23. Gorshkova OG, Korotaeva NV, Ostapchuk AM, Voliuvach OV, Gudzenko TV. 2016. Fatty acids composition of microbacterium genus bacteria - destructors of oil hydrocarbons. Mikrobiol. Z 78: 92-98. https://doi.org/10.15407/microbiolj78.05.092
  24. Collins MD, Jones D. 1981. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol. Rev. 45: 316-354. https://doi.org/10.1128/mr.45.2.316-354.1981
  25. Minnikin DE, O'Donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, et al. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2: 233-241. https://doi.org/10.1016/0167-7012(84)90018-6
  26. Komagata K, Suzuki KI. 1987. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol. 19: 161-207. https://doi.org/10.1016/S0580-9517(08)70410-0
  27. Kim M, Oh HS, Park SC, Chun J. 2014. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 64: 346-351. https://doi.org/10.1099/ijs.0.059774-0