DOI QR코드

DOI QR Code

Raoultella ornithinolytica as a Potential Candidate for Bioremediation of Heavy Metal from Contaminated Environments

  • Received : 2022.12.27
  • Accepted : 2023.03.06
  • Published : 2023.07.28

Abstract

Disposal of waste containing heavy metals into the environment is a major threat to human health and can result in toxic or chronic poisoning in aquatic life. In the current study, metal-resistant Raoultella ornithinolytica was isolated from metal-contaminated samples collected from the Tanjaro River, located southwest of Sulaymaniyah, Iraq. R. ornithinolytica was identified by partial amplification of 16S rRNA. The uptake potency of heavy metals was assessed using inductively coupled plasma-optical emission spectroscopy (ICP-OES) and indicated that R. ornithinolytica removed 67, 89, 63.4, 55.6, 56.5, 65, and 61.9% of Cd, Pb, Cr, Ni, Zn, Co, and Fe, respectively. These removal rates were influenced by temperature, pH, and contact time; at 35℃ and pH 5 with a change in the incubation time, the reduction rate improved from 89 to 95% for Pb, from 36.4 to 45% for Cu, and from 55.6 to 64% for Ni. Gene analysis indicated that R. ornithinolytica contained pbrT, chrB, nccA, iroN, and czcA genes, but the pcoD gene was absent. Energy-dispersive X-ray spectroscopy (EDS) images showed evidence of metal ion binding on the cell wall surface with different rates of binding. Transmission electron microscopy (TEM) detected different mechanisms for metal particle localization; cell surface adsorption was the main mechanism for Pb, Zn, and Co uptake, while Cd, Ni, and Fe were accumulated inside the cell. The current study describes, for the first time, the isolation of R. ornithinolytica from metal-contaminated water, which can be used as an eco-friendly biological expedient for the remediation and detoxification of metals from contaminated environments.

Keywords

Acknowledgement

The authors are highly thankful to both University of Sulaimani and Charmo University-Charmo Center for Research and Training, Kurdistan Region, F.R. Iraq for providing all the available facilities to perform this study.

References

  1. Masindi V, Muedi Kh L. 2018. Environmental Contamination by Heavy Metals, In Saleh HEM, Aglan RF (eds.), Heavy Metals, IntechOpen, London.
  2. Zamora-Ledezma C, Negrete-Bolagay D, Figueroa F, Zamora-Ledezma E, Ni M, et al. 2021. Heavy metal water pollution: a fresh look about hazards, novel and conventional remediation methods. Environ. Technol. Innov. 22: 101504.
  3. Irawati W, Yuwono T, Rusli A. 2016. Detection of plasmids and curing analysis in copper resistant bacteria Acinetobacter sp. IrC1, Acinetobacter sp. IrC2, and Cupriavidus sp. IrC4. Biodiversitas 17: 296-300.
  4. Hussain MI, Khan ZI, Naeem M, Ahmad K, Awan MUF, Alwahibi MS, et al. 2021. Blood, hair and feces as an indicator of environmental exposure of sheep, cow and Buffalo to cobalt: a health risk perspectives. Sustainability (Switzerland) 13: 7873.
  5. El-Shanshoury RRES, Sobhy EE, Perihan SA. 2013. Uptake of some heavy metals by metal resistant Enterobacter sp. isolate from Egypt. Afr. J. Microbiol. Res. 7: 2875-2884. https://doi.org/10.5897/AJMR12.1352
  6. Wang J, Chen C. 2009. Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 27: 195-226. https://doi.org/10.1016/j.biotechadv.2008.11.002
  7. Akpor OB, Muchie M. 2010. Remediation of heavy metals in drinking water and wastewater treatment systems: processes and applications. Int. J. Phys. Sci. 5: 1807-1817.
  8. Grenni P, Barra Caracciolo A, Mariani L, Cardoni M, Riccucci C, Elhaes H, et al. 2019. Effectiveness of a new green technology for metal removal from contaminated water. Microchem. J. 147: 1010-1020. https://doi.org/10.1016/j.microc.2019.04.026
  9. Afzal AM, Rasool MH, Waseem M, Aslam B. 2017. Assessment of heavy metal tolerance and biosorptive potential of Klebsiella variicola isolated from industrial effluents. AMB Express 7: 184.
  10. Edokpayi JN, Odiyo JO, Popoola EO, Msagati TAM. 2017. Evaluation of temporary seasonal variation of heavy metals and their potential ecological risk in Nzhelele River, South Africa. Open Chem. 15: 272-282. https://doi.org/10.1515/chem-2017-0033
  11. Irawati W, Ompusunggu NP, Susilowati DN, Yuwono T. 2019. Molecular and physiological characterization of indigenous copper-resistant bacteria from Cikapundung River, West Java, Indonesia. Biodiversitas 20: 344-349. https://doi.org/10.13057/biodiv/d200206
  12. Shammi T, Ahmed S. 2013. Heavy metal tolerance and antibiotic resistance of Bacillus spp. isolated from two major rivers in Bangladesh. Bangladesh J. Microbiol. 30: 17-22. https://doi.org/10.3329/bjm.v30i1-2.28448
  13. Chatziefthimiou AD, Crespo-Medina M, Wang Y, Vetriani C, Barkay T. 2007. The isolation and initial characterization of mercury resistant chemolithotrophic thermophilic bacteria from mercury rich geothermal springs. Extremophiles 11: 469-479. https://doi.org/10.1007/s00792-007-0065-2
  14. Hussein H, Moawad H, Ibrahem S. 2003. Isolation and characterization of Pseudomonas resistant to heavy metals contaminants. Arab J. Biotech. 7: 13-22. https://doi.org/10.2225/vol7-issue1-fulltext-2
  15. Hajjar R, Ambaraghassi G, Sebajang H, Schwenter F, Su SH. 2020. Raoultella ornithinolytica: emergence and resistance. Infect. Drug Resist. 13: 1091-1104. https://doi.org/10.2147/IDR.S191387
  16. Liu S, Zheng Y, Ma Y, Sarwar A, Zhao X, Luo T, et al. 2019. Evaluation and proteomic analysis of lead adsorption by lactic acid bacteria. Int. J. Mol. Sci. 20: 5540.
  17. Zagui GS, Moreira NC, Santos DV, Darini ALC, Domingo JL, Segura-Munoz SI, et al. 2021. High occurrence of heavy metal tolerance genes in bacteria isolated from wastewater: a new concern? Environ. Res.196: 110352.
  18. Xu S, Xing Y, Liu S, Huang Q, Chen W. 2019. Role of novel bacterial Raoultella sp. strain X13 in plant growth promotion and cadmium bioremediation in soil. Appl. Microbiol. Biotechnol. 103: 3887-3897. https://doi.org/10.1007/s00253-019-09700-7
  19. Xie J, Zhao X, Song X, Wei J. 2012. Cultivation in SBR system and screening of simultaneous nitrogen and phosphorus removal strain with identification. Adv. Mater. Res. 518-523: 5347-5350. https://doi.org/10.4028/www.scientific.net/AMR.518-523.5347
  20. Sklodowska A, Mielnicki S, Drewniak L. 2018. Raoultella sp. SM1, a novel iron-reducing and uranium-precipitating strain. Chemosphere 195: 722-726. https://doi.org/10.1016/j.chemosphere.2017.12.123
  21. Koc S, Kabatas B, Icgen B. 2013. Multidrug and heavy metal-resistant Raoultella planticola isolated from surface water. Bull. Environ. Contam. Toxicol. 91: 177-183. https://doi.org/10.1007/s00128-013-1031-6
  22. Satokari RM, Vaughan EE, Akkermans ADL, Saarela M, De Vos WM. 2001. Bifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 67: 504-123.
  23. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547-1549. https://doi.org/10.1093/molbev/msy096
  24. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729. https://doi.org/10.1093/molbev/mst197
  25. Cai X, Zheng X, Zhang D, Iqbal W, Liu C, Yang B, et al. 2019. Microbial characterization of heavy metal resistant bacterial strains isolated from an electroplating wastewater treatment plant. Ecotoxicol. Environ. Saf. 181: 472-480. https://doi.org/10.1016/j.ecoenv.2019.06.036
  26. Sultan I, Ali A, Gogry FA, Rather IA, Sabir JSM, Haq QMR. 2020. Bacterial isolates harboring antibiotics and heavy-metal resistance genes co-existing with mobile genetic elements in natural aquatic water bodies. Saudi J. Biol. Sci. 27: 2660-2668. https://doi.org/10.1016/j.sjbs.2020.06.002
  27. Marzan LW, Hossain M, Mina SA, Akter Y, Chowdhury AMMA. 2017. Isolation and biochemical characterization of heavy-metal resistant bacteria from tannery effluent in Chittagong city, Bangladesh: bioremediation viewpoint. Egypt. J. Aquat. Res. 43: 65-74. https://doi.org/10.1016/j.ejar.2016.11.002
  28. Das MP, Kumari N. 2016. A microbial bioremediation approach: removal of heavy metal using isolated bacterial strains from industrial effluent disposal site. Int. J. Pharm. Sci Rev. Res. 38:11-114.
  29. Raja CE, Selvam GS. 2009. Plasmid profile and curing analysis of Pseudomonas aeruginosa as metal resistant. Int. J. Environ. Sci. Technol. 6: 259-266. https://doi.org/10.1007/BF03327630
  30. Zaman M, Pasha M, Akhter M. 2010. Plasmid curing of Escherichia coli cells with ethidium bromide, sodium dodecyl sulfate and acridine orange. Bangladesh J. Microbiol. 27: 28-31. https://doi.org/10.3329/bjm.v27i1.9165
  31. Chen J, Li J, Zhang H, Shi W, Liu Y. 2019. Bacterial heavy-metal and antibiotic resistance genes in a copper tailing dam area in northern China. Front. Microbiol. 10: 1916.
  32. Mourao J, Novais C, Machado J, Peixe L, Antunes P. 2015. Metal tolerance in emerging clinically relevant multidrug-resistant Salmonella enterica serotype 4,[5],12:i:- clones circulating in Europe. Int. J. Antimicrob. Agents 45: 610-616. https://doi.org/10.1016/j.ijantimicag.2015.01.013
  33. Abou-Shanab RAI, Berkum P, Angle JS. 2007. Heavy metal resistance and genotypic analysis of metal resistance genes in gram-positive and gram-negative bacteria present in Ni-rich serpentine soil and in the rhizosphere of Alyssum murale. Chemosphere 68: 360-367. https://doi.org/10.1016/j.chemosphere.2006.12.051
  34. Messaili C, Messai Y, Bakour R. 2019. Virulence gene profiles, antimicrobial resistance and phylogenetic groups of fecal Escherichia coli strains isolated from broiler chickens in Algeria. Vet. Ital. 55: 35-46.
  35. Jun Y, Shaun N, Stephen J, Torsten T. 2015. High-resolution and specific detection of bacteria on complex surfaces using nanoparticle probes and electron microscopy. PLoS One 10: e0126404.
  36. Jiang B, Fu L, Cao W, Zhang B, Li F, Liu Y. 2019. Microbial flocculant produced by a novel Paenibacillus sp., strain A9, using food processing wastewater to replace fermentation medium and its application for the removal of Pb(II) from aqueous solution. Adsor. Sci. Technol. 37: 683-697. https://doi.org/10.1177/0263617419876850
  37. Upadhyay N, Vishwakarma K, Singh J, Mishra M, Kumar V, Rani R, et al. 2017. Tolerance and reduction of chromium(VI) by Bacillus sp. MNU16 isolated from contaminated coal mining soil. Front. Plant Sci. 8: 778.
  38. Zhang X, Hao X, Huo S, Lin W, Xia X, Liu K, et al. 2019. Isolation and identification of the Raoultella ornithinolytica-ZK4 degrading pyrethroid pesticides within soil sediment from an abandoned pesticide plant. Arch. Microbiol. 201: 1207-1217. https://doi.org/10.1007/s00203-019-01686-0
  39. Faqe Salih LI, Rashed RO, Sirwan Muhsin Muhammed SM. 2021. Evaluation of heavy metal content in water and removal of metals using native isolated bacterial strain. Biodivers. J. 22 : 3163-3174. https://doi.org/10.13057/biodiv/d220810
  40. Ping L, Guo Q, Chen X, Yuan X, Zhang C, Zhao H. 2017. Biodegradation of pyrene and benzo[a]pyrene in the liquid matrix and soil by a newly identified Raoultella planticola strain. 3Biotech 7: 56.
  41. Kabir MM, Fakhruddin ANM, Chowdhury MAZ, Pramanik MK, Fardous Z. 2018. Isolation and characterization of chromium(VI)-reducing bacteria from tannery effluents and solid wastes. World J. Microbiol. Biotechnol. 34: 126.
  42. Silva RM, Abalos RA, Gomez MD, JM, Cantero MD. 2009. Biosorption of chromium, copper, manganese and zinc by Pseudomonas aeruginosa AT18 isolated from a site contaminated with petroleum. Bioresour. Technol. 100: 1533-1538. https://doi.org/10.1016/j.biortech.2008.06.057
  43. Irawati W, Riak S, Sopiah N, Sulistia S. 2017a. Heavy metal tolerance in indigenous bacteria isolated from the industrial sewage in kemisan river, tangerang, banten, Indonesia. Biodiversitas 18: 1481-1486. https://doi.org/10.13057/biodiv/d180425
  44. OthmanN, Kane TH, Mohammed K, Alkaradaghi K, Salih F, Abdullah T, et al. 2017. Environmental Health Assessment in Sulaymaniyah City and Vicinity. https://doi.org/10.13140/RG.2.2.12898.12483.
  45. Baz S, Baz M, Barakate,M, Hassani L, El Gharmali A, Imziln B. 2015. Resistance to and accumulation of heavy metals by actinobacteria isolated from abandoned mining areas. ScientificWorldJournal 2015: 761834.
  46. Aka NRJ, Babalola OO. 2017. Identification and characterization of Cr-, Cd-, and Ni-tolerant bacteria isolated from mine tailings. Bioremed. J. 21: 1-19. https://doi.org/10.1080/10889868.2017.1282933
  47. Jackson TA, West MM, Leppard GG. 2011. Accumulation and partitioning of heavy hetals by bacterial cells and associated colloidal minerals, with alteration, neoformation, and selective adsorption of minerals by bacteria, in metal-polluted lake sediment. Geomicrobiol. J. 28: 23-55. https://doi.org/10.1080/01490451003739406
  48. Whiteley CG, and Lee DJ. 2006. Enzyme technology and biological remediation. Enzyme Microb. Technol. 38: 291-316. https://doi.org/10.1016/j.enzmictec.2005.10.010
  49. Dharanguttikar AA. 2018. Biosorption of cobalt by using Pseudomonas aerguinosa bacterial strain. June. MSc. Thesis. University of South Florida.
  50. Ozdemir G, Ozturk T, Ceyhan N, Isler R, Cosar T. 2003. Heavy metal biosorption by biomass of Ochrobactrum anthropi producing exopolysaccharide in activated sludge. Bioresour. Technol. 90: 71-74. https://doi.org/10.1016/S0960-8524(03)00088-9
  51. Bhattacharyya KG, Gupta S Sen. 2008. Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv. Colloid Interface Sci. 140: 114-131. https://doi.org/10.1016/j.cis.2007.12.008
  52. Ceribasi IH, Yetis U. 2001. 'Biosorption of Ni(ii) and Pb(ii) by Phanerochaete chrysosporium from a binary metal system - Kinetics', Water SA 27: 15-20.
  53. Akhter K, Ghous T, Andleeb S, Nasim F ul H, Ejaz S, Zain-Ul-Abdin, et al. 2017. Bioaccumulation of heavy metals by metal-resistant bacteria isolated from tagetes minuta rhizosphere, growing in soil adjoining automobile workshops. Pakistan J. Zool. 49: 1841-1846.
  54. Vijayadeep C, Sastry P. 2014. Effect of heavy metal uptake by E. coli and Bacillus spp. J. Bioremed. Biodegradation 05: 8-10. https://doi.org/10.4172/2155-6199.1000238
  55. Odokuma LO, Akponah E. 2010. Effect of concentration and contact time on heavy metal uptake by three bacterial isolates. J. Environ. Chem. Toxicol. 2: 84-97.
  56. Wang T, Wang X, Tian W, Yao L, Li Y, Chen Z, et al. 2020. Screening of heavy metal-immobilizing bacteria and its effect on reducing Cd2+ and Pb2+ concentrations in water spinach (Ipomoea aquatic forsk.). Int. J. Environ. Res. Public Health 17: 3122.
  57. Yang S, Deng W, Liu S, Yu X, Mustafa GR, Chen S, et al. 2020. Presence of heavy metal resistance genes in Escherichia coli and Salmonella isolates and analysis of resistance gene structure in E. coli E308. J. Glob. Antimicrob. Res. 21: 420-426. https://doi.org/10.1016/j.jgar.2020.01.009
  58. Zolgharnein H, Lila M, Azmi M, Saad MZ, Rahim A, Abd C, et al. 2007. Detection of plasmids in heavy metal resistance bacteria isolated from the Persian Gulf and enclosed industrial areas. Iranian J. Biotechnol. 5: 232-239.
  59. Das MP, Kumari N. 2016. A microbial bioremediation approach: removal of heavy metal using isolated bacterial strains from industrial effluent disposal site. Int. J. Pharm. Sci. Rev. Res. 38: 111-114.
  60. Kim YH, Fazlollahi F, Kennedy IM, Yacobi NR, Hamm-Alvarez SF, Borok Z, et al. 2010. Alveolar epithelial cell injury due to zinc oxide nanoparticle exposure. Am. J. Respir. Crit. Care Med. 182:1398-1409. https://doi.org/10.1164/rccm.201002-0185OC
  61. Nies, DH. 2003. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. 27: 313-339. https://doi.org/10.1016/S0168-6445(03)00048-2
  62. Jin Y, Luan Y, Ning Y, Wang L. 2018. Effects and mechanisms of microbial remediation of heavy metals in soil: a critical review. Appl. Sci. 8: 1336.
  63. Chowdhury S, Thakur A, Chaudhuri SR. 2011. Novel microbial consortium for laboratory scale lead removal from city effluent. J. Environ. Sci. Technol. 4: 45-51. https://doi.org/10.3923/jest.2011.41.54
  64. Chakravarty R, Banerjee PC. 2008. Morphological changes in an acidophilic bacterium induced by heavy metals. Extremophiles 12: 279-284. https://doi.org/10.1007/s00792-007-0128-4
  65. Vicentin RP, DOS Santos JV, Labory CRG, DA Costa, AM, Moreira FM. de S, Alves E. 2018. Tolerance to and accumulation of cadmium, copper, and zinc by Cupriavidus necator. Rev. Bras. Cienc. Solo 42: 1-12.
  66. Oladipo AA. 2018. MIL-53 (Fe)-based photo-sensitive composite for degradation of organochlorinated herbicide and enhanced reduction of Cr(VI). Process Saf. Environ. Prot. 116: 413-423. https://doi.org/10.1016/j.psep.2018.03.011
  67. Qurbani K, Hamzah H. 2020. Intimate communication between Comamonas aquatica and Fusarium solani in remediation of heavy metal-polluted environments. Arch. Microbiol. 202: 1397-1406. https://doi.org/10.1007/s00203-020-01853-8