DOI QR코드

DOI QR Code

Dynamic characteristics monitoring of a 421-m-tall skyscraper during Typhoon Muifa using smartphone

  • Kang Zhou (College of Civil Engineering, Hefei University of Technology) ;
  • Sha Bao (Shanghai Branch, China Construction Eighth Engineering Division Co., Ltd.) ;
  • Lun-Hai Zhi (College of Civil Engineering, Hefei University of Technology) ;
  • Feng Hu (College of Civil Engineering, Hefei University of Technology) ;
  • Kang Xu (School of Civil Engineering, Central South University) ;
  • Zhen-Ru Shu (School of Civil Engineering, Central South University)
  • Received : 2023.03.13
  • Accepted : 2023.07.27
  • Published : 2023.09.10

Abstract

Recently, the use of smartphones for structural health monitoring in civil engineering has drawn increasing attention due to their rapid development and popularization. In this study, the structural responses and dynamic characteristics of a 421-m-tall skyscraper during the landfall of Typhoon Muifa are monitored using an iPhone 13. The measured building acceleration responses are first corrected by the resampling technique since the sampling rate of smartphone-based measurement is unstable. Then, based on the corrected building acceleration, the wind-induced responses (i.e., along-wind and across-wind responses) are investigated and the serviceability performance of the skyscraper is assessed. Next, the amplitude-dependency and time-varying structural dynamic characteristics of the monitored supertall building during Typhoon Muifa are investigated by employing the random decrement technique and Bayesian spectral density approach. Moreover, the estimated results during Muifa are further compared with those of previous studies on the monitored building to discuss its long-term time-varying structural dynamic characteristics. The paper aims to demonstrate the applicability and effectiveness of smartphones for structural health monitoring of high-rise buildings.

Keywords

Acknowledgement

The work described in this paper was fully supported by grants from the National Natural Science Foundation of China (52208475, 51978230, and 52278495), and a grant from the Natural Science Foundation of Anhui Province (2108085J29).

References

  1. Barbe, K., Pintelon, R. and Schoukens, J. (2009), "Welch method revisited: nonparametric power spectrum estimation via circular overlap", IEEE Trans. Signal Pr., 58(2), 553-565. https://doi.org/10.1109/TSP.2009.2031724.
  2. CAECS (2010), Technical Specification for Concrete Structures of Tall Building, China Association for Engineering Construction Standardization, Architecture & Building Press, Beijing, China.
  3. Cao, L. and Chen, J. (2020), "Online investigation of vibration serviceability limitations using smartphones", Measure., 162, 107850. https://doi.org/10.1016/j.measurement.2020.107850.
  4. Castellanos-Toro, S., Marmolejo, M., Marulanda, J., Cruz, A. and Thomson, P. (2018), "Frequencies and damping ratios of bridges through operational modal analysis using smartphones", Constr. Build. Mater., 188, 490-504. https://doi.org/10.1016/j.conbuildmat.2018.08.089.
  5. Cole, J.H.A. (1973), "On-line failure detection and damping measurement of aerospace structures by random decrement signatures", NASA. Retrieved from https://ntrs.nasa.gov/api/citations/19730010202/downloads/19730010202.pdf.
  6. Dashti, S., Bray, J.D., Reilly, J., Glaser, S. and Bayen, A. (2014), "Mari E. Evaluating the reliability of phones as seismic monitoring instruments", Earthq. Spectra, 30(2), 721-742. https://doi.org/10.1193/091711EQS229M.
  7. Davenport, A.G. and Hill, C.P. (1986), "Damping in tall buildings: Its variability and treatment in design", Building Motion in Wind, ASCE, 42-57. Retrieved from https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0048285.
  8. Ghannadi, P. and Kourehli, S.S. (2022), "Efficiency of the slime mold algorithm for damage detection of large-scale structures", Struct. Des. Tall Spec. Build., 31(14), e1967. https://doi.org/10.1002/tal.1967.
  9. Guo, Y.L., Kareem, A. and Ni, Y.Q. (2012), "Performance evaluation of canton tower under winds based on full-scale data", J. Wind Eng. Indus. Aerodyn., 104, 116-128. https://doi.org/10.1016/j.jweia.2012.04.001.
  10. ISO 10137 (2007), Bases for Design of Structures-Serviceability of Buildings and Walkways against Vibrations, International Organization for Standardization, Geneva, Switzerland.
  11. Kareem, A. and Gurley, K. (1996), "Damping in structures: Its evaluation and treatment of uncertainty", J. Wind Eng. Indus. Aerodyn., 59(2-3), 131-157. https://doi.org/10.1016/0167-6105(96)00004-9.
  12. Katafygiotis, L.S. and Yuen, K.V. (2001), "Bayesian spectral density approach for modal updating using ambient data", Earthq. Eng. Struct. Dyn., 30(8), 1103-1123. https://doi.org/10.1002/eqe.53.
  13. Kong, Q., Allen, R.M., Kohler, M.D., Heaton, T.H. and Bunn, J. (2018), "Structural health monitoring of buildings using smartphone sensors", Seismol. Res. Lett., 89(2A), 594-602. https://doi.org/10.1785/0220170111.
  14. Korista, D.S., Sarkisian, M.P. and Abdelrazaq, A.K. (1998), "Design and construction of China's tallest building: the Jin Mao Tower, Shanghai", Proceedings of the Fifth International Conference on Tall Buildings, Hong Kong.
  15. Kudu, F.N., Ucak, S. and Osmancikli, G. (2015), "Estimation of damping ratios of steel structures by operational Modal analysis method", J. Constr. Steel Res., 112, 61-68. https://doi.org/10.1016/j.jcsr.2015.04.019.
  16. Li, Q.S., He, Y.H., Zhou, K., Han, X.L., He, Y.C. and Shu, Z.R. (2018), "Structural health monitoring for a 600 m high skyscraper", Struct. Des. Tall Spec. Build., 27(12), e1490. https://doi.org/10.1002/tal.1490.
  17. Li, Q.S., Li, X. and Chan, P.W. (2021), "Impact of a fifty-year-recurrence super typhoon on skyscrapers in Hong Kong: Large-scale field monitoring study", J. Struct. Eng., 147(3), 04021004. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002930.
  18. Li, Q.S., Xiao, Y.Q. and Fu, J.Y. (2007), "Full-scale measurements of wind effects on the Jin Mao building", J. Wind Eng. Indus. Aerodyn., 95(6), 445-466. https://doi.org/10.1016/j.jweia.2006.09.002.
  19. Li, Q.S., Xiao, Y.Q. and Wong, C.K. (2005), "Full-scale monitoring of typhoon effects on super tall buildings", J. Fluid. Struct., 20(5), 697-717. https://doi.org/10.1016/j.jfluidstructs.2005.04.003.
  20. Li, Q.S., Zhou, K. and Li, X. (2020), "Damping estimation of high-rise buildings considering structural modal directions", Earthq. Eng. Struct. Dyn., 49(6), 543-566. https://doi.org/10.1002/eqe.3253.
  21. Li, X. and Li, Q.S. (2018), "Monitoring structural performance of a supertall building during 14 tropical cyclones", J. Struct. Eng., 144(10), 04018176. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002145.
  22. Liu, Y.J., Fu, J.Y. and He, Y.C. (2023a), "Effects of Reynolds number on wind effects toward a super-tall building with curved cross-section", J. Build. Eng., 64, 105660. https://doi.org/10.1016/j.jobe.2022.105660.
  23. Liu, Y.J., Fu, J.Y., Tong, B., Liu, Y.H. and He, Y.C. (2023b), "Assessment of approaching wind field for high-rise buildings based on wind pressure records via machine learning techniques", Eng. Struct., 280, 115663. https://doi.org/10.1016/j.engstruct.2023.115663.
  24. Melbourne, W.H. and Palmer, T.R. (1992), "Accelerations and comfort criteria for buildings undergoing complex motions", J. Wind Eng. Indus. Aerodyn., 41(1-3), 105-116. https://doi.org/10.1016/0167-6105(92)90398-T.
  25. Montejo, L.A. (2011), "Signal processing based damage detection in structures subjected to random excitations", Struct. Eng. Mech., 40(6), 745-762. https://doi.org/10.12989/sem.2011.40.6.745.
  26. Morales, F.A.O., Cury, A.A. and Peixoto, R.A.F. (2018). "Analysis of thermal and damage effects over structural modal parameters", Struct. Eng. Mech., 65(1), 43-51. https://doi.org/10.12989/sem.2018.65.1.043.
  27. Mthembu, L., Marwala, T., Friswell, M.I. and Adhikari, S. (2011), "Model selection in finite element model updating using the Bayesian evidence statistic", Mech. Syst. Signal Pr., 25(7), 2399-2412. https://doi.org/10.1016/j.ymssp.2011.04.001.
  28. Ni, Y.Q., Wang, J. and Chan, T. (2015), "Structural damage alarming and localization of cable-supported bridges using multi-novelty indices: a feasibility study", Struct. Eng. Mech., 54(2), 337-362. https://doi.org/10.12989/sem.2015.54.2.337.
  29. Ni, Y.Q., Xia, Y., Liao, W.Y. and Ko, J.M. (2009), "Technology innovation in developing the structural health monitoring system for Guangzhou New TV Tower", Struct. Control Hlth. Monit., 16(1), 73-98. https://doi.org/10.1002/stc.303.
  30. Ozer, E. and Feng, M.Q. (2017), "Direction-sensitive smart monitoring of structures using heterogeneous smartphone sensor data and coordinate system transformation", Smart Mater. Struct., 26(4), 045026. https://doi.org/10.1088/1361-665X/aa6298.
  31. Ozer, E., Feng, M.Q. and Feng, D. (2015), "Citizen sensors for SHM: Towards a crowdsourcing platform", Sensor., 15(6), 14591-14614. https://doi.org/10.3390/s150614591.
  32. Rabiepour, M., Zhou, C., Chase, J.G., Rodgers, G.W. and Xu, C. (2022). "Structural health monitoring for pinching structures via hysteretic mechanics models", Struct. Eng. Mech., 82(2), 245-258. https://doi.org/10.12989/sem.2022.82.2.245.
  33. Reynders, E., Teughels, A. and De Roeck, G. (2010), "Finite element model updating and structural damage identification using OMAX data", Mech. Syst. Signal Pr., 24(5), 1306-1323. https://doi.org/10.1016/j.ymssp.2010.03.014.
  34. Shi, W., Lu, X. and Shen, J. (1999), "Site measurement of vibration characteristics of Shanghai Jin Mao Tower", Adv. Steel Struct., 783-789. https://doi.org/10.1016/B978-008043015-7/50091-9.
  35. Shrestha, A., Dang, J. and Wang, X. (2018), "Development of a smart-device-based vibration-measurement system: Effectiveness examination and application cases to existing structure", Struct. Control Hlth. Monit., 25(3), e2120. https://doi.org/10.1002/stc.2120.
  36. Sony, S., Dunphy, K., Sadhu, A. and Capretz, M. (2021), "A systematic review of convolutional neural network-based structural condition assessment techniques", Eng. Struct., 226, 111347. https://doi.org/10.1016/j.engstruct.2020.111347.
  37. Tamura, Y. (2012), "Amplitude dependency of damping in buildings and critical tip drift ratio", Int. J. High-Rise Build., 1(1), 1-13. https://doi.org/10.21022/IJHRB.2012.1.1.001.
  38. The Skyscraper Center, Council on Tall Buildings and Urban Habitat (CTBUH). Accessed Nov. 4, 2022. http://www.skyscrapercenter.com/buildings.
  39. Turunen, J., Thambirajah, J. and Larsson, M. (2011), "Comparison of three electromechanical oscillation damping estimation methods", IEEE Trans. Power Syst., 26(4), 2398-2407. https://doi.org/10.1109/TPWRS.2011.2155684.
  40. Vega, F. and Yu, W. (2022), "Smartphone based structural health monitoring using deep neural networks", Sensor. Actuat. A: Phys., 346, 113820. https://doi.org/10.1016/j.sna.2022.113820.
  41. Wang, H., Tao, T., Li, A. and Zhang, Y. (2016), "Structural health monitoring system for Sutong cable-stayed bridge", Smart Struct. Syst., 18(2), 317-334. https://doi.org/10.12989/sss.2016.18.2.317.
  42. Xia, Y., Hao, H., Brownjohn, J.M. and Xia, P.Q. (2002), "Damage identification of structures with uncertain frequency and mode shape data", Earthq. Eng. Struct. Dyn., 31(5), 1053-1066. https://doi.org/10.1002/eqe.137.
  43. Xu, Y.L., Zhu, Y.Q. and Zhou, M.J. (2010), "Preliminary health diagnosis on Jinmao Tall Building", Northwestern Seismol. J., 32(2), 169-172.
  44. Yan, Y.J., Cheng, L., Wu, Z.Y. and Yam, L.H. (2007), "Development in vibration-based structural damage detection technique", Mech. Syst. Signal Pr., 21(5), 2198-2211. https://doi.org/10.1016/j.ymssp.2006.10.002.
  45. Yi, T.H., Li, H.N. and Gu, M. (2011), "A new method for optimal selection of sensor location on a high-rise building using simplified finite element model", Struct. Eng. Mech., 37(6), 671-684. https://doi.org/10.12989/sem.2011.37.6.671.
  46. Zhao, X., Han, R. and Ding, Y. (2015), "Portable and convenient cable force measurement using a smartphone", J. Civil Struct. Hlth. Monit., 5(4), 481-491. https://doi.org/10.1007/s13349-015-0132-9.
  47. Zhao, X., Ri, K. and Han, R. (2016), "Experimental research on quick structural health monitoring technique for bridges using smartphone", Adv. Mater. Sci. Eng., 2016, Article ID 1871230. https://doi.org/10.1155/2016/1871230.
  48. Zhao, X., Zhao, Q. and Yu, Y. (2017), "Distributed displacement response investigation technique for bridge structures using smartphones", J. Perform. Constr. Facil., 31(4), 04017029. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001025.
  49. Zhi, L.H., Hu, F., Zhao, C. and Wang, J. (2021), "Modal parameter estimation of civil structures based on improved variational mode decomposition", Struct. Eng. Mech., 79(6), 683-697. https://doi.org/10.12989/sem.2021.79.6.683.
  50. Zhou, K. and Li, Q.S. (2021), "Effects of time-variant modal frequencies of high-rise buildings on damping estimation", Earthq. Eng. Struct. Dyn., 50(2), 394-414. https://doi.org/10.1002/eqe.3336.
  51. Zhou, K., Li, Q.S. and Han, X.L. (2022), "Modal identification of civil structures via stochastic subspace algorithm with Monte Carlo-based stabilization diagram", J. Struct. Eng., 148(6), 04022066. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003353.
  52. Zhou, K., Li, Q.S. and Li, X. (2019), "Eliminating beating effects in damping estimation of high-rise buildings", J. Eng. Mech., 145(12), 04019102. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001681.