Acknowledgement
The work described in this paper was fully supported by grants from the National Natural Science Foundation of China (52208475, 51978230, and 52278495), and a grant from the Natural Science Foundation of Anhui Province (2108085J29).
References
- Barbe, K., Pintelon, R. and Schoukens, J. (2009), "Welch method revisited: nonparametric power spectrum estimation via circular overlap", IEEE Trans. Signal Pr., 58(2), 553-565. https://doi.org/10.1109/TSP.2009.2031724.
- CAECS (2010), Technical Specification for Concrete Structures of Tall Building, China Association for Engineering Construction Standardization, Architecture & Building Press, Beijing, China.
- Cao, L. and Chen, J. (2020), "Online investigation of vibration serviceability limitations using smartphones", Measure., 162, 107850. https://doi.org/10.1016/j.measurement.2020.107850.
- Castellanos-Toro, S., Marmolejo, M., Marulanda, J., Cruz, A. and Thomson, P. (2018), "Frequencies and damping ratios of bridges through operational modal analysis using smartphones", Constr. Build. Mater., 188, 490-504. https://doi.org/10.1016/j.conbuildmat.2018.08.089.
- Cole, J.H.A. (1973), "On-line failure detection and damping measurement of aerospace structures by random decrement signatures", NASA. Retrieved from https://ntrs.nasa.gov/api/citations/19730010202/downloads/19730010202.pdf.
- Dashti, S., Bray, J.D., Reilly, J., Glaser, S. and Bayen, A. (2014), "Mari E. Evaluating the reliability of phones as seismic monitoring instruments", Earthq. Spectra, 30(2), 721-742. https://doi.org/10.1193/091711EQS229M.
- Davenport, A.G. and Hill, C.P. (1986), "Damping in tall buildings: Its variability and treatment in design", Building Motion in Wind, ASCE, 42-57. Retrieved from https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0048285.
- Ghannadi, P. and Kourehli, S.S. (2022), "Efficiency of the slime mold algorithm for damage detection of large-scale structures", Struct. Des. Tall Spec. Build., 31(14), e1967. https://doi.org/10.1002/tal.1967.
- Guo, Y.L., Kareem, A. and Ni, Y.Q. (2012), "Performance evaluation of canton tower under winds based on full-scale data", J. Wind Eng. Indus. Aerodyn., 104, 116-128. https://doi.org/10.1016/j.jweia.2012.04.001.
- ISO 10137 (2007), Bases for Design of Structures-Serviceability of Buildings and Walkways against Vibrations, International Organization for Standardization, Geneva, Switzerland.
- Kareem, A. and Gurley, K. (1996), "Damping in structures: Its evaluation and treatment of uncertainty", J. Wind Eng. Indus. Aerodyn., 59(2-3), 131-157. https://doi.org/10.1016/0167-6105(96)00004-9.
- Katafygiotis, L.S. and Yuen, K.V. (2001), "Bayesian spectral density approach for modal updating using ambient data", Earthq. Eng. Struct. Dyn., 30(8), 1103-1123. https://doi.org/10.1002/eqe.53.
- Kong, Q., Allen, R.M., Kohler, M.D., Heaton, T.H. and Bunn, J. (2018), "Structural health monitoring of buildings using smartphone sensors", Seismol. Res. Lett., 89(2A), 594-602. https://doi.org/10.1785/0220170111.
- Korista, D.S., Sarkisian, M.P. and Abdelrazaq, A.K. (1998), "Design and construction of China's tallest building: the Jin Mao Tower, Shanghai", Proceedings of the Fifth International Conference on Tall Buildings, Hong Kong.
- Kudu, F.N., Ucak, S. and Osmancikli, G. (2015), "Estimation of damping ratios of steel structures by operational Modal analysis method", J. Constr. Steel Res., 112, 61-68. https://doi.org/10.1016/j.jcsr.2015.04.019.
- Li, Q.S., He, Y.H., Zhou, K., Han, X.L., He, Y.C. and Shu, Z.R. (2018), "Structural health monitoring for a 600 m high skyscraper", Struct. Des. Tall Spec. Build., 27(12), e1490. https://doi.org/10.1002/tal.1490.
- Li, Q.S., Li, X. and Chan, P.W. (2021), "Impact of a fifty-year-recurrence super typhoon on skyscrapers in Hong Kong: Large-scale field monitoring study", J. Struct. Eng., 147(3), 04021004. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002930.
- Li, Q.S., Xiao, Y.Q. and Fu, J.Y. (2007), "Full-scale measurements of wind effects on the Jin Mao building", J. Wind Eng. Indus. Aerodyn., 95(6), 445-466. https://doi.org/10.1016/j.jweia.2006.09.002.
- Li, Q.S., Xiao, Y.Q. and Wong, C.K. (2005), "Full-scale monitoring of typhoon effects on super tall buildings", J. Fluid. Struct., 20(5), 697-717. https://doi.org/10.1016/j.jfluidstructs.2005.04.003.
- Li, Q.S., Zhou, K. and Li, X. (2020), "Damping estimation of high-rise buildings considering structural modal directions", Earthq. Eng. Struct. Dyn., 49(6), 543-566. https://doi.org/10.1002/eqe.3253.
- Li, X. and Li, Q.S. (2018), "Monitoring structural performance of a supertall building during 14 tropical cyclones", J. Struct. Eng., 144(10), 04018176. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002145.
- Liu, Y.J., Fu, J.Y. and He, Y.C. (2023a), "Effects of Reynolds number on wind effects toward a super-tall building with curved cross-section", J. Build. Eng., 64, 105660. https://doi.org/10.1016/j.jobe.2022.105660.
- Liu, Y.J., Fu, J.Y., Tong, B., Liu, Y.H. and He, Y.C. (2023b), "Assessment of approaching wind field for high-rise buildings based on wind pressure records via machine learning techniques", Eng. Struct., 280, 115663. https://doi.org/10.1016/j.engstruct.2023.115663.
- Melbourne, W.H. and Palmer, T.R. (1992), "Accelerations and comfort criteria for buildings undergoing complex motions", J. Wind Eng. Indus. Aerodyn., 41(1-3), 105-116. https://doi.org/10.1016/0167-6105(92)90398-T.
- Montejo, L.A. (2011), "Signal processing based damage detection in structures subjected to random excitations", Struct. Eng. Mech., 40(6), 745-762. https://doi.org/10.12989/sem.2011.40.6.745.
- Morales, F.A.O., Cury, A.A. and Peixoto, R.A.F. (2018). "Analysis of thermal and damage effects over structural modal parameters", Struct. Eng. Mech., 65(1), 43-51. https://doi.org/10.12989/sem.2018.65.1.043.
- Mthembu, L., Marwala, T., Friswell, M.I. and Adhikari, S. (2011), "Model selection in finite element model updating using the Bayesian evidence statistic", Mech. Syst. Signal Pr., 25(7), 2399-2412. https://doi.org/10.1016/j.ymssp.2011.04.001.
- Ni, Y.Q., Wang, J. and Chan, T. (2015), "Structural damage alarming and localization of cable-supported bridges using multi-novelty indices: a feasibility study", Struct. Eng. Mech., 54(2), 337-362. https://doi.org/10.12989/sem.2015.54.2.337.
- Ni, Y.Q., Xia, Y., Liao, W.Y. and Ko, J.M. (2009), "Technology innovation in developing the structural health monitoring system for Guangzhou New TV Tower", Struct. Control Hlth. Monit., 16(1), 73-98. https://doi.org/10.1002/stc.303.
- Ozer, E. and Feng, M.Q. (2017), "Direction-sensitive smart monitoring of structures using heterogeneous smartphone sensor data and coordinate system transformation", Smart Mater. Struct., 26(4), 045026. https://doi.org/10.1088/1361-665X/aa6298.
- Ozer, E., Feng, M.Q. and Feng, D. (2015), "Citizen sensors for SHM: Towards a crowdsourcing platform", Sensor., 15(6), 14591-14614. https://doi.org/10.3390/s150614591.
- Rabiepour, M., Zhou, C., Chase, J.G., Rodgers, G.W. and Xu, C. (2022). "Structural health monitoring for pinching structures via hysteretic mechanics models", Struct. Eng. Mech., 82(2), 245-258. https://doi.org/10.12989/sem.2022.82.2.245.
- Reynders, E., Teughels, A. and De Roeck, G. (2010), "Finite element model updating and structural damage identification using OMAX data", Mech. Syst. Signal Pr., 24(5), 1306-1323. https://doi.org/10.1016/j.ymssp.2010.03.014.
- Shi, W., Lu, X. and Shen, J. (1999), "Site measurement of vibration characteristics of Shanghai Jin Mao Tower", Adv. Steel Struct., 783-789. https://doi.org/10.1016/B978-008043015-7/50091-9.
- Shrestha, A., Dang, J. and Wang, X. (2018), "Development of a smart-device-based vibration-measurement system: Effectiveness examination and application cases to existing structure", Struct. Control Hlth. Monit., 25(3), e2120. https://doi.org/10.1002/stc.2120.
- Sony, S., Dunphy, K., Sadhu, A. and Capretz, M. (2021), "A systematic review of convolutional neural network-based structural condition assessment techniques", Eng. Struct., 226, 111347. https://doi.org/10.1016/j.engstruct.2020.111347.
- Tamura, Y. (2012), "Amplitude dependency of damping in buildings and critical tip drift ratio", Int. J. High-Rise Build., 1(1), 1-13. https://doi.org/10.21022/IJHRB.2012.1.1.001.
- The Skyscraper Center, Council on Tall Buildings and Urban Habitat (CTBUH). Accessed Nov. 4, 2022. http://www.skyscrapercenter.com/buildings.
- Turunen, J., Thambirajah, J. and Larsson, M. (2011), "Comparison of three electromechanical oscillation damping estimation methods", IEEE Trans. Power Syst., 26(4), 2398-2407. https://doi.org/10.1109/TPWRS.2011.2155684.
- Vega, F. and Yu, W. (2022), "Smartphone based structural health monitoring using deep neural networks", Sensor. Actuat. A: Phys., 346, 113820. https://doi.org/10.1016/j.sna.2022.113820.
- Wang, H., Tao, T., Li, A. and Zhang, Y. (2016), "Structural health monitoring system for Sutong cable-stayed bridge", Smart Struct. Syst., 18(2), 317-334. https://doi.org/10.12989/sss.2016.18.2.317.
- Xia, Y., Hao, H., Brownjohn, J.M. and Xia, P.Q. (2002), "Damage identification of structures with uncertain frequency and mode shape data", Earthq. Eng. Struct. Dyn., 31(5), 1053-1066. https://doi.org/10.1002/eqe.137.
- Xu, Y.L., Zhu, Y.Q. and Zhou, M.J. (2010), "Preliminary health diagnosis on Jinmao Tall Building", Northwestern Seismol. J., 32(2), 169-172.
- Yan, Y.J., Cheng, L., Wu, Z.Y. and Yam, L.H. (2007), "Development in vibration-based structural damage detection technique", Mech. Syst. Signal Pr., 21(5), 2198-2211. https://doi.org/10.1016/j.ymssp.2006.10.002.
- Yi, T.H., Li, H.N. and Gu, M. (2011), "A new method for optimal selection of sensor location on a high-rise building using simplified finite element model", Struct. Eng. Mech., 37(6), 671-684. https://doi.org/10.12989/sem.2011.37.6.671.
- Zhao, X., Han, R. and Ding, Y. (2015), "Portable and convenient cable force measurement using a smartphone", J. Civil Struct. Hlth. Monit., 5(4), 481-491. https://doi.org/10.1007/s13349-015-0132-9.
- Zhao, X., Ri, K. and Han, R. (2016), "Experimental research on quick structural health monitoring technique for bridges using smartphone", Adv. Mater. Sci. Eng., 2016, Article ID 1871230. https://doi.org/10.1155/2016/1871230.
- Zhao, X., Zhao, Q. and Yu, Y. (2017), "Distributed displacement response investigation technique for bridge structures using smartphones", J. Perform. Constr. Facil., 31(4), 04017029. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001025.
- Zhi, L.H., Hu, F., Zhao, C. and Wang, J. (2021), "Modal parameter estimation of civil structures based on improved variational mode decomposition", Struct. Eng. Mech., 79(6), 683-697. https://doi.org/10.12989/sem.2021.79.6.683.
- Zhou, K. and Li, Q.S. (2021), "Effects of time-variant modal frequencies of high-rise buildings on damping estimation", Earthq. Eng. Struct. Dyn., 50(2), 394-414. https://doi.org/10.1002/eqe.3336.
- Zhou, K., Li, Q.S. and Han, X.L. (2022), "Modal identification of civil structures via stochastic subspace algorithm with Monte Carlo-based stabilization diagram", J. Struct. Eng., 148(6), 04022066. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003353.
- Zhou, K., Li, Q.S. and Li, X. (2019), "Eliminating beating effects in damping estimation of high-rise buildings", J. Eng. Mech., 145(12), 04019102. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001681.