DOI QR코드

DOI QR Code

Modulation of DNA methylation by one-carbon metabolism: a milestone for healthy aging

  • Sang-Woon Choi (Chaum Life Center, CHA University School of Medicine) ;
  • Simonetta Friso (Unit of Internal Medicine B and ‘Epigenomics and Gene-Nutrient Interactions' Laboratory, Department of Medicine, University of Verona School of Medicine)
  • Received : 2023.02.16
  • Accepted : 2023.05.01
  • Published : 2023.08.01

Abstract

Healthy aging can be defined as an extended lifespan and health span. Nutrition has been regarded as an important factor in healthy aging, because nutrients, bioactive food components, and diets have demonstrated beneficial effects on aging hallmarks such as oxidative stress, mitochondrial function, apoptosis and autophagy, genomic stability, and immune function. Nutrition also plays a role in epigenetic regulation of gene expression, and DNA methylation is the most extensively investigated epigenetic phenomenon in aging. Interestingly, age-associated DNA methylation can be modulated by one-carbon metabolism or inhibition of DNA methyltransferases. One-carbon metabolism ultimately controls the balance between the universal methyl donor S-adenosylmethionine and the methyltransferase inhibitor S-adenosylhomocysteine. Water-soluble B-vitamins such as folate, vitamin B6, and vitamin B12 serve as coenzymes for multiple steps in one-carbon metabolism, whereas methionine, choline, betaine, and serine act as methyl donors. Thus, these one-carbon nutrients can modify age-associated DNA methylation and subsequently alter the age-associated physiologic and pathologic processes. We cannot elude aging per se but we may at least change age-associated DNA methylation, which could mitigate age-associated diseases and disorders.

Keywords

References

  1. Selvarani R, Mohammed S, Richardson A. Effect of rapamycin on aging and age-related diseases-past and future. Geroscience 2021;43:1135-58. https://doi.org/10.1007/s11357-020-00274-1
  2. Bulterijs S, Hull RS, Bjork VC, Roy AG. It is time to classify biological aging as a disease. Front Genet 2015;6:205.
  3. Fulop T, Larbi A, Dupuis G, Le Page A, Frost EH, Cohen AA, Witkowski JM, Franceschi C. Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes? Front Immunol 2018;8:1960.
  4. Park LK, Friso S, Choi SW. Nutritional influences on epigenetics and age-related disease. Proc Nutr Soc 2012;71:75-83. https://doi.org/10.1017/S0029665111003302
  5. Tammen SA, Friso S, Choi SW. Epigenetics: the link between nature and nurture. Mol Aspects Med 2013;34:753-64. https://doi.org/10.1016/j.mam.2012.07.018
  6. Johnstone SE, Gladyshev VN, Aryee MJ, Bernstein BE. Epigenetic clocks, aging, and cancer. Science 2022;378:1276-7. https://doi.org/10.1126/science.abn4009
  7. Rahbari R, Wuster A, Lindsay SJ, Hardwick RJ, Alexandrov LB, Turki SA, Dominiczak A, Morris A, Porteous D, Smith B, et al. Timing, rates and spectra of human germline mutation. Nat Genet 2016;48:126-33. https://doi.org/10.1038/ng.3469
  8. Hardy TM, Tollefsbol TO. Epigenetic diet: impact on the epigenome and cancer. Epigenomics 2011;3:503-18. https://doi.org/10.2217/epi.11.71
  9. Lan X, Field MS, Stover PJ. Cell cycle regulation of folate-mediated one-carbon metabolism. Wiley Interdiscip Rev Syst Biol Med 2018;10:e1426.
  10. Friso S, Udali S, De Santis D, Choi SW. One-carbon metabolism and epigenetics. Mol Aspects Med 2017;54:28-36. https://doi.org/10.1016/j.mam.2016.11.007
  11. Mari M, de Gregorio E, de Dios C, Roca-Agujetas V, Cucarull B, Tutusaus A, Morales A, Colell A. Mitochondrial glutathione: recent insights and role in disease. Antioxidants (Basel) 2020;9:909.
  12. Blom HJ, Smulders Y. Overview of homocysteine and folate metabolism. With special references to cardiovascular disease and neural tube defects. J Inherit Metab Dis 2011;34:75-81. https://doi.org/10.1007/s10545-010-9177-4
  13. Mason JB. Biomarkers of nutrient exposure and status in one-carbon (methyl) metabolism. J Nutr 2003;133 Suppl 3:941S-947S. https://doi.org/10.1093/jn/133.3.941S
  14. Yi P, Melnyk S, Pogribna M, Pogribny IP, Hine RJ, James SJ. Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation. J Biol Chem 2000;275:29318-23. https://doi.org/10.1074/jbc.M002725200
  15. Dahlhoff C, Worsch S, Sailer M, Hummel BA, Fiamoncini J, Uebel K, Obeid R, Scherling C, Geisel J, Bader BL, et al. Methyl-donor supplementation in obese mice prevents the progression of NAFLD, activates AMPK and decreases acyl-carnitine levels. Mol Metab 2014;3:565-80. https://doi.org/10.1016/j.molmet.2014.04.010
  16. Smith DE, Hornstra JM, Kok RM, Blom HJ, Smulders YM. Folic acid supplementation does not reduce intracellular homocysteine, and may disturb intracellular one-carbon metabolism. Clin Chem Lab Med 2013;51:1643-50. https://doi.org/10.1515/cclm-2012-0694
  17. Pizzolo F, Blom HJ, Choi SW, Girelli D, Guarini P, Martinelli N, Stanzial AM, Corrocher R, Olivieri O, Friso S. Folic acid effects on S-adenosylmethionine, S-adenosylhomocysteine, and DNA methylation in patients with intermediate hyperhomocysteinemia. J Am Coll Nutr 2011;30:11-8. https://doi.org/10.1080/07315724.2011.10719939
  18. Yao Y, Gao LJ, Zhou Y, Zhao JH, Lv Q, Dong JZ, Shang MS. Effect of advanced age on plasma homocysteine levels and its association with ischemic stroke in non-valvular atrial fibrillation. J Geriatr Cardiol 2017;14:743-9.
  19. Kuo HK, Sorond FA, Chen JH, Hashmi A, Milberg WP, Lipsitz LA. The role of homocysteine in multisystem age-related problems: a systematic review. J Gerontol A Biol Sci Med Sci 2005;60:1190-201. https://doi.org/10.1093/gerona/60.9.1190
  20. Ostrakhovitch EA, Tabibzadeh S. Homocysteine and age-associated disorders. Ageing Res Rev 2019;49:144-64. https://doi.org/10.1016/j.arr.2018.10.010
  21. James SJ, Melnyk S, Pogribna M, Pogribny IP, Caudill MA. Elevation in S-adenosylhomocysteine and DNA hypomethylation: potential epigenetic mechanism for homocysteine-related pathology. J Nutr 2002;132:2361S-236S.
  22. Zhang DM, Ye JX, Mu JS, Cui XP. Efficacy of vitamin B supplementation on cognition in elderly patients with cognitive-related diseases. J Geriatr Psychiatry Neurol 2017;30:50-9. https://doi.org/10.1177/0891988716673466
  23. Li Y, Huang T, Zheng Y, Muka T, Troup J, Hu FB. Folic acid supplementation and the risk of cardiovascular diseases: a meta-analysis of randomized controlled trials. J Am Heart Assoc 2016;5:e003768.
  24. Annibal A, Tharyan RG, Schonewolff MF, Tam H, Latza C, Auler MM, Gronke S, Partridge L, Antebi A. Regulation of the one carbon folate cycle as a shared metabolic signature of longevity. Nat Commun 2021;12:3486.
  25. Pogribny IP, James SJ, Beland FA. Molecular alterations in hepatocarcinogenesis induced by dietary methyl deficiency. Mol Nutr Food Res 2012;56:116-25. https://doi.org/10.1002/mnfr.201100524
  26. Cheng TY, Makar KW, Neuhouser ML, Miller JW, Song X, Brown EC, Beresford SA, Zheng Y, Poole EM, Galbraith RL, et al. Folate-mediated one-carbon metabolism genes and interactions with nutritional factors on colorectal cancer risk: Women's Health Initiative Observational Study. Cancer 2015;121:3684-91. https://doi.org/10.1002/cncr.29465
  27. Murray B, Barbier-Torres L, Fan W, Mato JM, Lu SC. Methionine adenosyltransferases in liver cancer. World J Gastroenterol 2019;25:4300-19. https://doi.org/10.3748/wjg.v25.i31.4300
  28. Rushworth D, Mathews A, Alpert A, Cooper LJ. Dihydrofolate reductase and thymidylate synthase transgenes resistant to methotrexate interact to permit novel transgene regulation. J Biol Chem 2015;290:22970-6. https://doi.org/10.1074/jbc.C115.671123
  29. Showalter SL, Showalter TN, Witkiewicz A, Havens R, Kennedy EP, Hucl T, Kern SE, Yeo CJ, Brody JR. Evaluating the drug-target relationship between thymidylate synthase expression and tumor response to 5-fluorouracil. Is it time to move forward? Cancer Biol Ther 2008;7:986-94. https://doi.org/10.4161/cbt.7.7.6181
  30. Raghubeer S, Matsha TE. Methylenetetrahydrofolate (MTHFR), the one-carbon cycle, and cardiovascular risks. Nutrients 2021;13:4562.
  31. Nieraad H, de Bruin N, Arne O, Hofmann MC, Schmidt M, Saito T, Saido TC, Gurke R, Schmidt D, Till U, et al. Impact of hyperhomocysteinemia and different dietary interventions on cognitive performance in a knock-in mouse model for Alzheimer's disease. Nutrients 2020;12:4562.
  32. Zeng J, Gu Y, Fu H, Liu C, Zou Y, Chang H. Association between one-carbon metabolism-related vitamins and risk of breast cancer: a systematic review and meta-analysis of prospective studies. Clin Breast Cancer 2020;20:e469-80. https://doi.org/10.1016/j.clbc.2020.02.012
  33. Bonaa KH, Njolstad I, Ueland PM, Schirmer H, Tverdal A, Steigen T, Wang H, Nordrehaug JE, Arnesen E, Rasmussen K, et al. Homocysteine lowering and cardiovascular events after acute myocardial infarction. N Engl J Med 2006;354:1578-88. https://doi.org/10.1056/NEJMoa055227
  34. Lonn E, Yusuf S, Arnold MJ, Sheridan P, Pogue J, Micks M, McQueen MJ, Probstfield J, Fodor G, Held C, et al. Homocysteine lowering with folic acid and B vitamins in vascular disease. N Engl J Med 2006;354:1567-77. https://doi.org/10.1056/NEJMoa060900
  35. Kwok T, Wu Y, Lee J, Lee R, Yung CY, Choi G, Lee V, Harrison J, Lam L, Mok V. A randomized placebo-controlled trial of using B vitamins to prevent cognitive decline in older mild cognitive impairment patients. Clin Nutr 2020;39:2399-405. https://doi.org/10.1016/j.clnu.2019.11.005
  36. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009;324:930-5. https://doi.org/10.1126/science.1170116
  37. Wu H, D'Alessio AC, Ito S, Wang Z, Cui K, Zhao K, Sun YE, Zhang Y. Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev 2011;25:679-84. https://doi.org/10.1101/gad.2036011
  38. Hu YC, Hu HC, Lin S, Chen XM. The role of DNA hydroxymethylation in the regulation of atherosclerosis. Yi Chuan 2020;42:632-40.
  39. Li Y, Liu Y, Strickland FM, Richardson B. Age-dependent decreases in DNA methyltransferase levels and low transmethylation micronutrient levels synergize to promote overexpression of genes implicated in autoimmunity and acute coronary syndromes. Exp Gerontol 2010;45:312-22. https://doi.org/10.1016/j.exger.2009.12.008
  40. Arand J, Chiang HR, Martin D, Snyder MP, Sage J, Reijo Pera RA, Wossidlo M. Tet enzymes are essential for early embryogenesis and completion of embryonic genome activation. EMBO Rep 2022;23:e53968.
  41. Johnson ND, Huang L, Li R, Li Y, Yang Y, Kim HR, Grant C, Wu H, Whitsel EA, Kiel DP, et al. Age-related DNA hydroxymethylation is enriched for gene expression and immune system processes in human peripheral blood. Epigenetics 2020;15:294-306. https://doi.org/10.1080/15592294.2019.1666651
  42. Tammen SA, Dolnikowski GG, Ausman LM, Liu Z, Kim KC, Friso S, Choi SW. Aging alters hepatic DNA hydroxymethylation, as measured by liquid chromatography/mass spectrometry. J Cancer Prev 2014;19:301-8. https://doi.org/10.15430/JCP.2014.19.4.301
  43. Truong TP, Sakata-Yanagimoto M, Yamada M, Nagae G, Enami T, Nakamoto-Matsubara R, Aburatani H, Chiba S. Age-dependent decrease of DNA hydroxymethylation in human T cells. J Clin Exp Hematop 2015;55:1-6. https://doi.org/10.3960/jslrt.55.1
  44. Tsurumi A, Li WX. Global heterochromatin loss: a unifying theory of aging? Epigenetics 2012;7:680-8. https://doi.org/10.4161/epi.20540
  45. Lee JH, Kim EW, Croteau DL, Bohr VA. Heterochromatin: an epigenetic point of view in aging. Exp Mol Med 2020;52:1466-74. https://doi.org/10.1038/s12276-020-00497-4
  46. Harrison A, Parle-McDermott A. DNA methylation: a timeline of methods and applications. Front Genet 2011;2:74.
  47. Ashapkin VV, Kutueva LI, Vanyushin BF. Aging as an epigenetic phenomenon. Curr Genomics 2017;18:385-407. https://doi.org/10.2174/1389202918666170412112130
  48. Heyn H, Li N, Ferreira HJ, Moran S, Pisano DG, Gomez A, Diez J, Sanchez-Mut JV, Setien F, Carmona FJ, et al. Distinct DNA methylomes of newborns and centenarians. Proc Natl Acad Sci U S A 2012;109:10522-7. https://doi.org/10.1073/pnas.1120658109
  49. Sun D, Yi SV. Impacts of chromatin states and long-range genomic segments on aging and DNA methylation. PLoS One 2015;10:e0128517.
  50. Corso-Diaz X, Gentry J, Rebernick R, Jaeger C, Brooks MJ, van Asten F, Kooragayala K, Gieser L, Nellissery J, Covian R, et al. Genome-wide profiling identifies DNA methylation signatures of aging in rod photoreceptors associated with alterations in energy metabolism. Cell Reports 2020;31:107525.
  51. Zhao M, Qin J, Yin H, Tan Y, Liao W, Liu Q, Luo S, He M, Liang G, Shi Y, et al. Distinct epigenomes in CD4+ T cells of newborns, middle-ages and centenarians. Sci Rep 2016;6:38411.
  52. Johansson A, Enroth S, Gyllensten U. Continuous aging of the human DNA methylome throughout the human lifespan. PLoS One 2013;8:e67378.
  53. Unnikrishnan A, Freeman WM, Jackson J, Wren JD, Porter H, Richardson A. The role of DNA methylation in epigenetics of aging. Pharmacol Ther 2019;195:172-85. https://doi.org/10.1016/j.pharmthera.2018.11.001
  54. Bell CG, Lowe R, Adams PD, Baccarelli AA, Beck S, Bell JT, Christensen BC, Gladyshev VN, Heijmans BT, Horvath S, et al. DNA methylation aging clocks: challenges and recommendations. Genome Biol 2019;20:249.
  55. Saul D, Kosinsky RL. Epigenetics of aging and aging-associated diseases. Int J Mol Sci 2021;22:401.
  56. Horvath S. DNA methylation age of human tissues and cell types. Genome Biol 2013;14:R115.
  57. Hannum G, Guinney J, Zhao L, Zhang L, Hughes G, Sadda S, Klotzle B, Bibikova M, Fan JB, Gao Y, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 2013;49:359-67. https://doi.org/10.1016/j.molcel.2012.10.016
  58. Dhingra R, Kwee LC, Diaz-Sanchez D, Devlin RB, Cascio W, Hauser ER, Gregory S, Shah S, Kraus WE, Olden K, et al. Evaluating DNA methylation age on the Illumina MethylationEPIC Bead Chip. PLoS One 2019;14:e0207834.
  59. Jylhava J, Pedersen NL, Hagg S. Biological age predictors. EBioMedicine 2017;21:29-36. https://doi.org/10.1016/j.ebiom.2017.03.046
  60. Levine ME, Lu AT, Quach A, Chen BH, Assimes TL, Bandinelli S, Hou L, Baccarelli AA, Stewart JD, Li Y, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY) 2018;10:573-91. https://doi.org/10.18632/aging.101414
  61. Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, Hou L, Baccarelli AA, Li Y, Stewart JD, et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY) 2019;11:303-27.
  62. Nwanaji-Enwerem JC, Colicino E, Gao X, Wang C, Vokonas P, Boyer EW, Baccarelli AA, Schwartz J. Associations of plasma folate and vitamin B6 with blood DNA methylation age: an analysis of one-carbon metabolites in the VA Normative Aging Study. J Gerontol A Biol Sci Med Sci 2021;76:760-9. https://doi.org/10.1093/gerona/glaa257
  63. Fitzgerald KN, Hodges R, Hanes D, Stack E, Cheishvili D, Szyf M, Henkel J, Twedt MW, Giannopoulou D, Herdell J, et al. Potential reversal of epigenetic age using a diet and lifestyle intervention: a pilot randomized clinical trial. Aging (Albany NY) 2021;13:9419-32. https://doi.org/10.18632/aging.202913
  64. Kim KC, Friso S, Choi SW. DNA methylation, an epigenetic mechanism connecting folate to healthy embryonic development and aging. J Nutr Biochem 2009;20:917-26. https://doi.org/10.1016/j.jnutbio.2009.06.008
  65. Lillycrop KA, Hoile SP, Grenfell L, Burdge GC. DNA methylation, ageing and the influence of early life nutrition. Proc Nutr Soc 2014;73:413-21. https://doi.org/10.1017/S0029665114000081
  66. Messerschmidt DM, Knowles BB, Solter D. DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev 2014;28:812-28. https://doi.org/10.1101/gad.234294.113
  67. Fernandez-Arroyo S, Cuyas E, Bosch-Barrera J, Alarcon T, Joven J, Menendez JA. Activation of the methylation cycle in cells reprogrammed into a stem cell-like state. Oncoscience 2016;2:958-67. https://doi.org/10.18632/oncoscience.280
  68. Van Winkle LJ, Ryznar R. One-carbon metabolism regulates embryonic stem cell fate through epigenetic DNA and histone modifications: implications for transgenerational metabolic disorders in adults. Front Cell Dev Biol 2019;7:300.
  69. Tucci V, Isles AR, Kelsey G, Ferguson-Smith AC; Erice Imprinting Group. Genomic imprinting and physiological processes in mammals. Cell 2019;176:952-65. https://doi.org/10.1016/j.cell.2019.01.043
  70. Dunford AR, Sangster JM. Maternal and paternal periconceptional nutrition as an indicator of offspring metabolic syndrome risk in later life through epigenetic imprinting: A systematic review. Diabetes Metab Syndr 2017;11 Suppl 2:S655-62. https://doi.org/10.1016/j.dsx.2017.04.021
  71. Chamberlain JA, Dugue PA, Bassett JK, Hodge AM, Brinkman MT, Joo JE, Jung CH, Makalic E, Schmidt DF, Hopper JL, et al. Dietary intake of one-carbon metabolism nutrients and DNA methylation in peripheral blood. Am J Clin Nutr 2018;108:611-21. https://doi.org/10.1093/ajcn/nqy119
  72. Ozias MK, Schalinske KL. All-trans-retinoic acid rapidly induces glycine N-methyltransferase in a dose-dependent manner and reduces circulating methionine and homocysteine levels in rats. J Nutr 2003;133:4090-4. https://doi.org/10.1093/jn/133.12.4090
  73. Speckmann B, Schulz S, Hiller F, Hesse D, Schumacher F, Kleuser B, Geisel J, Obeid R, Grune T, Kipp AP. Selenium increases hepatic DNA methylation and modulates one-carbon metabolism in the liver of mice. J Nutr Biochem 2017;48:112-9. https://doi.org/10.1016/j.jnutbio.2017.07.002
  74. Wischhusen P, Saito T, Heraud C, Kaushik SJ, Fauconneau B, Antony Jesu Prabhu P, Fontagne-Dicharry S, Skjaerven KH. Parental selenium nutrition affects the one-carbon metabolism and the hepatic DNA methylation pattern of rainbow trout (Oncorhynchus mykiss) in the progeny. Life (Basel) 2020;10:121.
  75. Mierziak J, Kostyn K, Boba A, Czemplik M, Kulma A, Wojtasik W. Influence of the bioactive diet components on the gene expression regulation. Nutrients 2021;13:3673.
  76. Hassan FU, Rehman MS, Khan MS, Ali MA, Javed A, Nawaz A, Yang C. Curcumin as an alternative epigenetic modulator: mechanism of action and potential effects. Front Genet 2019;10:514.
  77. Farhan M, Ullah MF, Faisal M, Farooqi AA, Sabitaliyevich UY, Biersack B, Ahmad A. Differential methylation and acetylation as the epigenetic basis of resveratrol's anticancer activity. Medicines (Basel) 2019;6:24.
  78. Sae-Lee C, Corsi S, Barrow TM, Kuhnle GG, Bollati V, Mathers JC, Byun HM. Dietary intervention modifies DNA methylation age assessed by the epigenetic clock. Mol Nutr Food Res 2018;62:e1800092.
  79. Friso S, Choi SW, Girelli D, Mason JB, Dolnikowski GG, Bagley PJ, Olivieri O, Jacques PF, Rosenberg IH, Corrocher R, et al. A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc Natl Acad Sci U S A 2002;99:5606-11.  https://doi.org/10.1073/pnas.062066299
  80. Mohammad K, Titorenko VI. Caloric restriction creates a metabolic pattern of chronological aging delay that in budding yeast differs from the metabolic design established by two other geroprotectors. Oncotarget 2021;12:608-25. https://doi.org/10.18632/oncotarget.27926
  81. Kim CH, Lee EK, Choi YJ, An HJ, Jeong HO, Park D, Kim BC, Yu BP, Bhak J, Chung HY. Short-term calorie restriction ameliorates genomewide, age-related alterations in DNA methylation. Aging Cell 2016;15:1074-81. https://doi.org/10.1111/acel.12513
  82. Sziraki A, Tyshkovskiy A, Gladyshev VN. Global remodeling of the mouse DNA methylome during aging and in response to calorie restriction. Aging Cell 2018;17:e12738.
  83. Lu Y, Brommer B, Tian X, Krishnan A, Meer M, Wang C, Vera DL, Zeng Q, Yu D, Bonkowski MS, et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature 2020;588:124-9. https://doi.org/10.1038/s41586-020-2975-4
  84. Green DR. Polyamines and aging: a CLEAR connection? Mol Cell 2019;76:5-7. https://doi.org/10.1016/j.molcel.2019.09.003
  85. Aissa AF, Amaral CL, Venancio VP, Machado CD, Hernandes LC, Santos PW, Curi R, Bianchi ML, Antunes LM. Methionine-supplemented diet affects the expression of cardiovascular disease-related genes and increases inflammatory cytokines in mice heart and liver. J Toxicol Environ Health A 2017;80:1116-28. https://doi.org/10.1080/15287394.2017.1357366
  86. Virtanen JK, Voutilainen S, Rissanen TH, Happonen P, Mursu J, Laukkanen JA, Poulsen H, Lakka TA, Salonen JT. High dietary methionine intake increases the risk of acute coronary events in middle-aged men. Nutr Metab Cardiovasc Dis 2006;16:113-20. https://doi.org/10.1016/j.numecd.2005.05.005
  87. Ables GP, Hens JR, Nichenametla SN. Methionine restriction beyond life-span extension. Ann N Y Acad Sci 2016;1363:68-79. https://doi.org/10.1111/nyas.13014
  88. Kitada M, Ogura Y, Monno I, Xu J, Koya D. Effect of methionine restriction on aging: its relationship to oxidative stress. Biomedicines 2021;9:130.
  89. Sanderson SM, Gao X, Dai Z, Locasale JW. Methionine metabolism in health and cancer: a nexus of diet and precision medicine. Nat Rev Cancer 2019;19:625-37. https://doi.org/10.1038/s41568-019-0187-8
  90. Wanders D, Hobson K, Ji X. Methionine restriction and cancer biology. Nutrients 2020;12:684.
  91. Lauinger L, Kaiser P. Sensing and signaling of methionine metabolism. Metabolites 2021;11:83.
  92. Gu X, Orozco JM, Saxton RA, Condon KJ, Liu GY, Krawczyk PA, Scaria SM, Harper JW, Gygi SP, Sabatini DM. SAMTOR is an S-adenosylmethionine sensor for the mTORC1 pathway. Science 2017;358:813-8. https://doi.org/10.1126/science.aao3265
  93. Mattocks DA, Mentch SJ, Shneyder J, Ables GP, Sun D, Richie JP Jr, Locasale JW, Nichenametla SN. Short term methionine restriction increases hepatic global DNA methylation in adult but not young male C57BL/6J mice. Exp Gerontol 2017;88:1-8. https://doi.org/10.1016/j.exger.2016.12.003
  94. Tamanna N, Mayengbam S, House JD, Treberg JR. Methionine restriction leads to hyperhomocysteinemia and alters hepatic H2S production capacity in Fischer-344 rats. Mech Ageing Dev 2018;176:9-18. https://doi.org/10.1016/j.mad.2018.10.004
  95. Prudova A, Bauman Z, Braun A, Vitvitsky V, Lu SC, Banerjee R. S-adenosylmethionine stabilizes cystathionine beta-synthase and modulates redox capacity. Proc Natl Acad Sci U S A 2006;103:6489-94. https://doi.org/10.1073/pnas.0509531103
  96. Wong M. Mammalian target of rapamycin (mTOR) pathways in neurological diseases. Biomed J 2013;36:40-50. https://doi.org/10.4103/2319-4170.110365
  97. Ogawa T, Masumura K, Kohara Y, Kanai M, Soga T, Ohya Y, Blackwell TK, Mizunuma M. S-adenosyl-L-homocysteine extends lifespan through methionine restriction effects. Aging Cell 2022;21:e13604.
  98. Reddy VS, Trinath J, Reddy GB. Implication of homocysteine in protein quality control processes. Biochimie 2019;165:19-31. https://doi.org/10.1016/j.biochi.2019.06.017
  99. Ganguly P, Alam SF. Role of homocysteine in the development of cardiovascular disease. Nutr J 2015;14:6.
  100. Luzzi S, Cherubini V, Falsetti L, Viticchi G, Silvestrini M, Toraldo A. Homocysteine, cognitive functions, and degenerative dementias: state of the art. Biomedicines 2022;10:2741.
  101. Burgos-Barragan G, Wit N, Meiser J, Dingler FA, Pietzke M, Mulderrig L, Pontel LB, Rosado IV, Brewer TF, Cordell RL, et al. Mammals divert endogenous genotoxic formaldehyde into one-carbon metabolism. Nature 2017;548:549-54. https://doi.org/10.1038/nature23481
  102. Schug ZT. Formaldehyde detoxification creates a new wheel for the folate-driven one-carbon "bi"-cycle. Biochemistry 2018;57:889-90. https://doi.org/10.1021/acs.biochem.7b01261
  103. He H, Noor E, Ramos-Parra PA, Garcia-Valencia LE, Patterson JA, Diaz de la Garza RI, Hanson AD, Bar-Even A. In vivo rate of formaldehyde condensation with tetrahydrofolate. Metabolites 2020;10:650.
  104. Chen X, Chothia SY, Basran J, Hopkinson RJ. Formaldehyde regulates tetrahydrofolate stability and thymidylate synthase catalysis. Chem Commun (Camb) 2021;57:5778-81. https://doi.org/10.1039/D1CC01425K
  105. Morellato AE, Umansky C, Pontel LB. The toxic side of one-carbon metabolism and epigenetics. Redox Biol 2021;40:101850.
  106. Brosnan ME, Brosnan JT. Formate: the neglected member of one-carbon metabolism. Annu Rev Nutr 2016;36:369-88. https://doi.org/10.1146/annurev-nutr-071715-050738
  107. Yang JH, Hayano M, Griffin PT, Amorim JA, Bonkowski MS, Apostolides JK, Salfati EL, Blanchette M, Munding EM, Bhakta M, et al. Loss of epigenetic information as a cause of mammalian aging. Cell 2023;186:305-326.e27. https://doi.org/10.1016/j.cell.2022.12.027