DOI QR코드

DOI QR Code

굴착 손상 영역 및 근계 영역에서의 모암 및 벤토나이트의 열-수리적 거동 특성에 대한 수치해석적 연구

Long-term Changes in Excavation Damaged Zone(EDZ) and Near-Field due to Thermal-Hydraulic Processes in Host Rock and Bentonite

  • 조성길 ((주)태성에스엔이) ;
  • 권용민 ((주)태성에스엔이) ;
  • 김현재 ((주)태성에스엔이) ;
  • 서진원 ((주)태성에스엔이) ;
  • 김교순 ((주)태성에스엔이) ;
  • 구준모 (경희대학교 기계공학과)
  • SungGil Jo (TAE SUNG S&E, Inc.) ;
  • YongMin Gwon (TAE SUNG S&E, Inc.) ;
  • HyunJae Kim (TAE SUNG S&E, Inc.) ;
  • JinWon Seo (TAE SUNG S&E, Inc.) ;
  • GyoSoon Kim (TAE SUNG S&E, Inc.) ;
  • JuneMo Koo (Kyung Hee University, Department of Mechanical Engineering)
  • 투고 : 2023.10.06
  • 심사 : 2023.11.29
  • 발행 : 2023.12.31

초록

To validate the numerical model used in the study of deep disposal of spent nuclear fuel, we selected benchmark cases and performed numerical model validation. We selected the DECOVALEX-THMC Task D_THM1 FEBEX Type benchmark case, which was conducted from 2003 to 2007. We analyzed the thermal-hydraulic (TH) behavior using the finite element program CODE_BRIGHT and verified the results against previous studies. The temperature results were similar to the results of DECOVALEX-THMC Task D. The saturation results showed a similar trend to the results of DECOVALEX-THMC Task D, but the time to reach full saturation was different.

키워드

과제정보

이 논문은 2023년도 정부 (산업통상자원부)의 재원으로 사용후핵연료관리핵심기술개발사업단 및 한국에너지기술평가원의 지원을 받아 수행된 연구사업임 (No.2021040101003C).

참고문헌

  1. Kang HS. 2023. Spent nuclear fuel storage status for the 2nd quarter of 2023, KHNP. Accessed August 2023. Available form: https://npp.khnp.co.kr/board/view.khnp?boardId=BBS_0000015&menuCd=DOM_000000103004007000&orderBy=REGISTER_DATE%20DESC&startPage=1&dataSid=10272#u. 
  2. SKB. 2012. AB, Svensk Karnbranslehantering. KBS-3H Complementary studies. Swedish Nuclear Fuel and Waste Management Co(SKB), Stockholm, Sweden. TR-12-01. 
  3. Lee C, Kim T, Lee J, Park J-W, Kwon S and Kim J-S. 2020. Introduction of International Cooperation Project, DECOVALEX from 2008 to 2019. Tunn. Undergr. Space 30(4):271-305. https://doi.org/10.7474/TUS.2020.30.4.271. 
  4. Kwon S, Cho W-J and Choi J-w. 2007. Status of the International Cooperation Project, DECOVALEX for THM Coupling Analysis. JNFCWT 5(4):323-338. 
  5. SKI. 2008. DECOVALEX-THMC Project Task D Long-Term Permeability/Porosity Changes in the EDZ and Near Field due to THM and THC Processes in Volcanic and Crystalline-Bentonite Systems Final Report, ISSN 1104-1374, ISRN SKI-R-08/45-SE. 
  6. Birkholzer J, Rutqvist J and Sonnenthal E. 2007. DECOVALEX-THMC Project. Task D. Long-Term Permeability/Porosity Changes in the EDZ and Near Field due to THM and THC Processes in Volcanic and Crystalline-Bentonite Systems. Phase 1 Report. No. SKI-R--07-10. Swedish Nuclear Power Inspectorate. 
  7. NEA-OECD. 1995. The Environmental and Ethical Basis of Geological Disposal of Long-lived Radioactive Wastes: A Collective Opinion of the Radioactive Waste Management Committee of the Nuclear Energy Agency. 
  8. Hedin A. 1999. SR 97: Processes in the Repository Evolution. Vol. 99. No. 7. Svensk karnbranslehantering AB/Swedish Nuclear Fuel and Waste Management. 
  9. Clara S, Salas J and Arcos D. 2010. Aspects of Geochemical Evolution of the Skbnear Field in the Frame of Sr-Site, TR-10-59, ISSN 1404-0344. 
  10. Lee GJ, Yoon S, Kim TH and Kim JS. 2022. Design Considerations for Buffer Materials and Research. Tunn. Undergr. Space 32(1):59-77. https://doi.org/10.7474/TUS.2022.32.1.059. 
  11. Olivella S, Gens A, Carrera J and Alonso EE. 1996. Numerical formulation for a simulator (CODE_BRIGHT) for the coupled analysis of saline media. Eng. Comput. 13(7):87-112. https://doi.org/10.1108/02644409610151575. 
  12. Olivella S, Carrera J, Gens A and Alonso EE. 1994. Nonisothermal multiphase flow of brine and gas through saline media. Transp. Porous Media 15(3):271-293. https://doi.org/10.1007/BF00613282. 
  13. Olivella S, Vaunat J and Rodriguez-Dono A. 2022. CODE_BRIGHT 2022 User's Guide. Universitat Politecnica de Catalunya. 
  14. Pintado X, Kristensson O, Malmberg D, Akesson M, Olivella S and Puig I. 2017. TH and THM modelling of a KBS-3H deposition drift. Posiva working report 2016-25. Posiva Oy. pp. 69-79. 
  15. Toprak E. 2013. THM modelling of deposition tunnel in ONKALO project. Universitat Politecnica de Catalunya. pp. 98-99. http://hdl.handle.net/2099.1/17270. 
  16. Mualem Y. 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12(3):513-522. https://doi.org/10.1029/WR012i003p00513. 
  17. Van Genuchten MTh. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44:892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x. 
  18. Song YS. 2018. Estimation on Unsaturated Characteristic Curves of Acid Sulfate Soils (ASS). KSEG 28(1):25-34. https://doi.org/10.9720/kseg.2018.1.025. 
  19. Pintado X and Rautioaho E. 2013. Thermo-hydraulic modelling of buffer and backfill. POSIVA 2012-48. Posiva Oy. pp. 11-22. 
  20. Shin H. 2011. Formulation of Fully Coupled THM Behavior in Unsaturated Soil. KGS 27(3):75-83.