DOI QR코드

DOI QR Code

CERTAIN ASPECTS OF ${\mathcal{I}}$-LACUNARY ARITHMETIC STATISTICAL CONVERGENCE

  • MEHMET GURDAL (Department of Mathematics, Suleyman Demirel University)
  • Received : 2023.03.21
  • Accepted : 2023.05.21
  • Published : 2023.07.30

Abstract

In this paper, we firstly presented the definitions of arithmetic ${\mathcal{I}}$-statistically convergence, ${\mathcal{I}}$-lacunary arithmetic statistically convergence, strongly ${\mathcal{I}}$-lacunary arithmetic convergence, ${\mathcal{I}}$-Cesàro arithmetic summable and strongly ${\mathcal{I}}$-Cesàro arithmetic summable using weighted density via Orlicz function ${\tilde{\phi}}$. Then, we proved some theorems associated with these concepts, and we examined the relationship between them. Finally, we establish some sequential properties of ${\mathcal{I}}$-lacunary arithmetic statistical continuity.

Keywords

References

  1. M. Balcerzak, P. Das, M. Filipczak and J. Swaczyna, Generalized kinds of density and the associated ideals, Acta Math. Hungar. 147 (2015), 97-115.  https://doi.org/10.1007/s10474-015-0510-0
  2. F. Basar, Summability Theory and its Applications, Bentham Science Publishers, Istanbul, 2012. 
  3. F. Basar and H. Dutta, Summable Spaces and Their Duals, Matrix Transformations and Geometric Properties, CRC Press, Taylor & Francis Group, Monographs and Research Notes in Mathematics, Boca Raton, London, New York, 2020. 
  4. R. C olak, Lacunary strongly convergence of difference sequences with respect to a modulus function, Filomat 17 (2003), 9-14. 
  5. P. Das, E. Savas and S. Ghosal, On generalized of certain summability methods using ideals, Appl. Math. Lett. 24 (2011), 1509-1514.  https://doi.org/10.1016/j.aml.2011.03.036
  6. H. Dutta and F. Basar, A generalization of Orlicz sequence spaces by Cesaro mean of order one, Acta Math. Univ. Comenianae 2 (2011), 185 
  7. I.A. Demirci and M. Gurdal, Lacunary Statistical Convergence for Sets of Triple Sequences via Orlicz Function, Theory Appl. Math. Comput. Sci. 11 (2021), 1-13. 
  8. I.A. Demirci and M. Gurdal, On Lacunary Statistical ${\tilde{\phi}}$-convergence for Triple Sequences of Sets Via Ideals, J. Appl. Math. Informatics 40 (2022), 433-444. 
  9. H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.  https://doi.org/10.4064/cm-2-3-4-241-244
  10. J.A. Fridy, On statistical convergence, Analysis (Munich) 5 (1985), 301-313. 
  11. J.A. Fridy and C. Orhan, Lacunary statistical convergence, Pacific J. Math. 160 (1993), 43-51.  https://doi.org/10.2140/pjm.1993.160.43
  12. M. Gurdal, Some types of convergence, Doctoral Dissertation. S. Demirel Univ. Isparta, 2004. 
  13. M. Gurdal and I. Acik, On I-Cauchy sequences in 2-normed spaces, Math. Inequal. Appl. 11 (2008), 349-354. 
  14. M. Gurdal and M.B. Huban, On I-convergence of double sequences in the topology induced by random 2-norms, Mat. Vesnik 66 (2014), 73-83. 
  15. M. Gurdal and M.B. Huban, Statistical convergence and C∗-operator algebras, Theory Appl. Math. Comput. Sci. 7 (2017), 41-50. 
  16. M. Gurdal and S. Pehlivan, Statistical convergence in 2-normed spaces, Southeast Asian Bull. Math. 33 (2009), 257-264. 
  17. B. Hazarika and A. Esi, Lacunary ideal quasi Cauchy sequences, An. Univ. Craiova Ser. Mat. Inform. 45 (2018), 220-231. 
  18. M.B. Huban, M. Gurdal, Wijsman Lacunary invariant statistical convergence for triple sequences via Orlicz function, J. Classical Anal. 17 (2021), 119-128.  https://doi.org/10.7153/jca-2021-17-08
  19. M.B. Huban, M. Gurdal and H. Bayturk, On asymptotically lacunary statistical equivalent triple sequences via ideals and Orlicz function, Honam Math. J. 43 (2021), 343-357. 
  20. O. Kisi, On lacunary I-invariant arithmetic convergence, Malaya J. Mat. 9 (2021), 1-11.  https://doi.org/10.26637/mjm0902/001
  21. O. Kisi, On Iσ-arithmetic convergence, Malaya J. Mat. 9 (2021), 64-71.  https://doi.org/10.26637/mjm0903/001
  22. O. Kisi, On I lacunary arithmetic statistical convergence, J. Appl. Math. Informatics 40 (2022), 327-339. 
  23. O. Kisi, On invariant arithmetic statistically convergence and lacunary invariant arithmetic statistically convergence, Palestine J. Math. 11 (2022), 378-383. 
  24. P. Kostyrko, T. Salat and W. Wilczynski, I-convergence, Real Anal. Exchange 26 (2000-2001), 669-685.  https://doi.org/10.2307/44154069
  25. J. Li, Lacunary statistical convergence and inclusion properties between lacunary methods, Internat. J. Math. Math. Sci. 23 (1998), 175-180.  https://doi.org/10.1155/S0161171200001964
  26. M. Mursaleen and F. Basar, Sequence Spaces: Topics in Modern Summability Theory, CRC Press, Taylor & Francis Group, Series: Mathematics and Its Applications, Boca Raton, London, New York, 2020. 
  27. A. Nabiev, S. Pehlivan and M. Gurdal, On I-Cauchy sequences, Taiwanese J. Math. 11 (2007), 569-576.  https://doi.org/10.11650/twjm/1500404709
  28. A.A. Nabiev, E. Savas and M. Gurdal, Statistically localized sequences in metric spaces, J. Appl. Anal. Comput. 9 (2019), 739-746. 
  29. M.M. Rao and Z.D. Ren, Applications of Orlicz spaces, Marcel Dekker Inc., 2002. 
  30. W.H. Ruckle, Arithmetical summability, J. Math. Anal. Appl. 396 (2012), 741-748.  https://doi.org/10.1016/j.jmaa.2012.06.048
  31. E. Savas, On I-lacunary statistical convergence of weight g of sequences of sets, Filomat 31 (2017), 5315-5322.  https://doi.org/10.2298/FIL1716315S
  32. E. Savas and S. Debnath, Lacunary statistically ϕ-convergence, Note Mat. 39 (2019), 111-119. 
  33. E. Savas, U. Yamanci and M. Gurdal, I-lacunary statistical convergence of weighted g via modulus functions in 2-normed spaces, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 68 (2019), 2324-2332.  https://doi.org/10.31801/cfsuasmas.573396
  34. T. Yaying and B. Hazarika, On arithmetical summability and multiplier sequences, Natl. Acad. Sci. Lett. 40 (2017), 43-46.  https://doi.org/10.1007/s40009-016-0525-2
  35. T. Yaying and B. Hazarika, On arithmetic continuity, Bol. Soc. Paran. Mat. 35 (2017), 139-145.  https://doi.org/10.5269/bspm.v35i1.27933
  36. T. Yaying and B. Hazarika, On arithmetic continuity in metric spaces, Afr. Mat. 28 (2017), 985-989. https://doi.org/10.1007/s13370-017-0498-4