Acknowledgement
This work was supported by a National Research Foundation of Korea (NRF) grant, funded by the Ministry of Science and ICT (No. NRF-2020R1A2C1010460, NRF-2021M2D2A1A02039565).
References
- D.K. Agarwal, S.W.J. Welch, G. Biswas, F. Durst, Planar simulation of bubble growth in film boiling in near-critical water using a variant of the VOF method, J. Heat Tran. 126 (2004) 329-338, https://doi.org/10.1115/1.1737779.
- K.Y. Lervag, H.L. Skarsvag, E. Aursand, J.A. Ouassou, M. Hammer, G. Reigstad, A. Ervik, E.H. Fyhn, M.A. Gjennestad, P. Aursand, O. Wilhelmsen, A combined fluid-dynamic and thermodynamic model to predict the onset of rapid phase transitions in LNG spills, J. Loss Prev. Process. Ind. 69 (2021), 104354, https://doi.org/10.1016/j.jlp.2020.104354.
- R. Arevalo, D. Antunez, L. Rebollo, A. Abanades, Estimation of radiation coupling factors in film boiling around spheres by mean of Computational Fluid Dynamics (CFD) tools, Int. J. Heat Mass Tran. 78 (2014) 84-89, https://doi.org/10.1016/j.ijheatmasstransfer.2014.06.063.
- C.C. Hsu, M.R. Lee, C.H. Wu, P.H. Chen, Effect of interlaced wettability on horizontal copper cylinders in nucleate pool boiling, Appl. Therm. Eng. 112 (2017) 1187-1194, https://doi.org/10.1016/j.applthermaleng.2016.10.176.
- M.R. Mata Arenales, S.K. Sujith, L.S. Kuo, P.H. Chen, Surface roughness variation effects on copper tubes in pool boiling of water, Int. J. Heat Mass Tran. 151 (2020), 119399, https://doi.org/10.1016/j.ijheatmasstransfer.2020.119399.
- Y. Sato, B. Niceno, Pool boiling simulation using an interface tracking method: from nucleate boiling to film boiling regime through critical heat flux, Int. J. Heat Mass Tran. 125 (2018) 876-890, https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.131.
- X. Ma, P. Cheng, 3D simulations of pool boiling above smooth horizontal heated surfaces by a phase-change lattice Boltzmann method, Int. J. Heat Mass Tran. 131 (2019) 1095e1108, https://doi.org/10.1016/ j.ijheatmasstransfer.2018.11.103.
- A. Saha, A.K. Das, Numerical study of boiling around wires and influence of active or passive neighbours on vapour film dynamics, Int. J. Heat Mass Tran. 130 (2019) 440-454, https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.117.
- B.A. Schrefler, R. Codina, F. Pesavento, J. Principe, Thermal coupling of fluid flow and structural response of a tunnel induced by fire, Int. J. Numer. Methods Eng. 87 (2011) 361-385, https://doi.org/10.1002/nme.3077.
- M. Miana, E. Bernal, J. Paniagua, J.R. Valdes, S. Izquierdo, I. Pellejero, A simple numerical methodology for thermal-fluid-structural interactions of air damping over heated micro-cantilevers, Microfluid. Nanofluidics 13 (2012) 131-140, https://doi.org/10.1007/s10404-012-0951-5.
- T.A. Cheema, H. Ali, C.W. Park, Thermal-FSI based analysis of annealing process for a steel wire in a tube furnace, Appl. Therm. Eng. 98 (2016) 340-351, https://doi.org/10.1016/j.applthermaleng.2015.12.070.
- T. Long, P. Yang, M. Liu, A novel coupling approach of smoothed finite element method with SPH for thermal fluid structure interaction problems, Int. J. Mech. Sci. 174 (2020), 105558, https://doi.org/10.1016/j.ijmecsci.2020.105558.
- H.S. Raut, A. Bhattacharya, A. Sharma, Computational multifluid-structure interaction study on nucleate boiling under the effect of stationary or oscillating torus, Int. J. Heat Mass Tran. 193 (2022), 122995, https://doi.org/10.1016/j.ijheatmasstransfer.2022.122995.
- M. Vahab, K. Shoele, M. Sussman, Interaction of an oscillating flexible plate and nucleate pool boiling vapor bubble: fluid-structure interaction in a multimaterial multiphase system, 2018 Fluid Dyn. Conf. (2018), https://doi.org/10.2514/6.2018-3718.
- K. Takano, Y. Hashimoto, T. Kunugi, T. Yokomine, Z. Kawara, Subcooled boiling-induced vibration of a heater rod located between two metallic walls, Nucl. Eng. Des. 308 (2016) 312-321, https://doi.org/10.1016/j.nucengdes.2016.08.046.
- K. Mondal, A. Bhattacharya, Pool boiling enhancement through induced vibrations in the liquid pool due to moving solid bodies - a numerical study using lattice Boltzmann method (LBM), Phys. Fluids 33 (2021), 093310, https://doi.org/10.1063/5.0057637.
- M. An, M. Liu, Y. Ma, X. Xu, Multi-scale vibration behavior of a graphite tube with an internal vapor-liquid-solid boiling flow, Powder Technol. 291 (2016) 201-213, https://doi.org/10.1016/j.powtec.2015.12.025.
- C. Staszel, S. Sinha-Ray, A.L. Yarin, Forced vibration of a heated wire subjected to nucleate boiling, Int. J. Heat Mass Tran. 135 (2019) 44-51, https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.101.
- X. Xu, M. Liu, Y. Ma, M. An, Y. Ma, Chaotic vibration characters of a graphite tube with an internal vapor-liquid-solid flow boiling, Powder Technol. 371 (2020) 74-82, https://doi.org/10.1016/j.powtec.2020.05.075.
- V.T. Nguyen, A. Sadeghi, B.J. Kim, Numerical Simulation of Deformation of Heater Wire under Film Boiling, 2022 [It has not published yet, but under revision].
- J. Kim, J.W. Yoon, H. Kim, S.U. Lee, Prediction of ballooning and burst for nuclear fuel cladding with anisotropic creep modeling during Loss of Coolant Accident (LOCA), Nucl. Eng. Technol. 53 (2021) 3379-3397, https://doi.org/10.1016/j.net.2021.04.020.
- G.H. Choi, C.H. Shin, J.Y. Kim, B.J. Kim, Circumferential steady-state creep test and analysis of Zircaloy-4 fuel cladding, Nucl. Eng. Technol. 53 (2021) 2312-2322, https://doi.org/10.1016/j.net.2021.01.010.
- D.H. Kim, G.H. Choi, H. Kim, C. Lee, S.U. Lee, J.D. Hong, H.S. Kim, Measurement of Zircaloy-4 cladding tube deformation using a three-dimensional digital image correlation system with internal transient heating and pressurization, Nucl. Eng. Des. 363 (2020), 110662, https://doi.org/10.1016/j.nucengdes.2020.110662.
- T. Jailin, N. Tardif, J. Desquines, P. Chaudet, M. Coret, M.C. Baietto, V. Georgenthum, Thermo-mechanical behavior of Zircaloy-4 claddings under simulated post-DNB conditions, J. Nucl. Mater. 531 (2020), 151984, https://doi.org/10.1016/j.jnucmat.2020.151984.
- S.K. Lee, M. Liu, N.R. Brown, K.A. Terrani, E.D. Blandford, H. Ban, C.B. Jensen, Y. Lee, Comparison of steady and transient flow boiling critical heat flux for FeCrAl accident tolerant fuel cladding alloy, Zircaloy, and Inconel, Int. J. Heat Mass Tran. 132 (2019) 643-654, https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.141.
- A.K. Yadav, C.H. Shin, S.U. Lee, H.C. Kim, Experimental and numerical investigation on thermo-mechanical behavior of fuel rod under simulated LOCA conditions, Nucl. Eng. Des. 337 (2018) 51-65, https://doi.org/10.1016/j.nucengdes.2018.06.023.
- D. Campello, N. Tardif, M. Moula, M.C. Baietto, M. Coret, J. Desquines, Identification of the steady-state creep behavior of Zircaloy-4 claddings under simulated Loss-Of-Coolant Accident conditions based on a coupled experimental/numerical approach, Int. J. Solid Struct. 115-116 (2017) 190-199, https://doi.org/10.1016/j.ijsolstr.2017.03.016.
- K. Geelhood, I. Porter, C. Goodson, W. Luscher, L. Kyriazidis, E. Torres, MatLib-1. 0 : Nuclear Material Properties Library, Pacific Northwest Natl, Lab. Richland, Washingt, 2020.
- D.L. Hagrman, G.A. Reymann, Mapro-A handbook of materials properties for use in the analysis of light water reactor fuel rod behavior, Idaho Natl. Eng. Labratory. 11 (1979) 203-482.
- J.H. Lienhard, P.T.Y. Wong, The dominant unstable wavelength and minimum heat flux during film boiling on a horizontal cylinder, J. Heat Tran. 86 (1964) 220-225, https://doi.org/10.1115/1.3687103.
- ANSYS Inc, Ansys Fluent Theory Guide, 2018, p. 697.
- G. Krishnamoorthy, A computationally efficient P1 radiation model for modern combustion systems utilizing pre-conditioned conjugate gradient methods, Appl. Therm. Eng. 119 (2017) 197-206, https://doi.org/10.1016/j.applthermaleng.2017.03.055.
- P. Wang, F. Fan, Q. Li, Accuracy evaluation of the gray gas radiation model in CFD simulation, Case Stud. Therm. Eng. 3 (2014) 51-58, https://doi.org/10.1016/j.csite.2014.03.003.
- W.H. McAdams, Heat Transmission, McGRAW-HILL, 1954, pp. 85-98.
- D.L. Sun, J.L. Xu, L. Wang, Development of a vapor-liquid phase change model for volume-of-fluid method in FLUENT, Int. Commun. Heat Mass Tran. 39 (2012) 1101-1106, https://doi.org/10.1016/j.icheatmasstransfer.2012.07.020.
- H.K. Versteeg, W. Malalasekera, An introduction to computational fluid dynamics the finite volume method, Pearson Educ. Limited, Engl. 2 (2007) 193-196.
- B. Anderson, R. Andresson, L. Hakansson, M. Mortensen, R. Sudiyo, B. van Wachem, Computational Fluid Dynamics for Engineers, Cambridge Univ. Press. (20011).
- D.B. Kothe, W.J. Rider, Comments on Modeling Interfacial Flows with Volume-Of-Fluid Methods, Los Alamos Natl. Lab. Los Alamos, NM, USA, 1995.
- W. Wagner, H.-J. Kretzschmar, International Steam Tables: Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97, Springer, Berlin, Heidelb, 2008, pp. 7-150.
- R.R. Archer, N.H. Cook, S.H. Crandall, An introduction to the mechanics of solids. https://doi.org/10.1063/1.3057081, 2012.
- K. Naumenko, Modeling of High-Temperature Creep for Structural Analysis Applications, Prof. Thesis, Martin Luther Univ. Halle-Wittenberg, Ger, 2006.
- M.K. Khan, M. Pathak, Ballooning deformation of zircaloy-4 fuel sheath, J. Press. Vessel Technol. Trans. ASME. 136 (2014) 1-12, https://doi.org/10.1115/1.4026146.
- F.J. Erbacher, H.J. Neitzel, H. Rosinger, H. Schmidt, K. Wiehr, Burst Criterion of Zircaloy Fuel Claddings in a Loss-Of-Coolant Accident, ASTM Int., 1982, pp. 271-283.
- H.E. Rosinger, J. Bowden, R.S.W. Shewfelt, The Anisotropic Creep Behaviour of Zircaloy-4 Fuel Cladding at 1073 K, At. Energy Canada Ltd, 1982, pp. 10-11.
- K.J. Geelhood, C.E. Beyer, W.G. Luscher, Stress/strain correlation for zircaloy, pacific northwest, Natl. Lab. 1 (2008) 3-7.
- Ansys Inc., ANSYS Mechanical APDL Material Reference, 2018, pp. 37-38.
- K. Nishikawa, T. Ito, K. Matsumoto, Kuroki Torato, Investigation of surface film boiling under free convection (2nd report, effect of diameter of horizontal cylinder and system pressure), Bull. JSME. 15 (1972) 1591-1602. https://doi.org/10.1299/jsme1958.15.1591
- R.W. Serth, Boiling Heat Transfer, 2007, pp. 385-441, https://doi.org/10.1016/B978-012373588-1/50012-7.