DOI QR코드

DOI QR Code

Numerical investigation on ballooning and rupture of a Zircaloy tube subjected to high internal pressure and film boiling conditions

  • Van Toan Nguyen (School of Mechanical Engineering, Chungnam National University) ;
  • Hyochan Kim (Nuclear Fuel Safety Research Division, Korea Atomic Energy Research Institute) ;
  • Byoung Jae Kim (School of Mechanical Engineering, Chungnam National University)
  • Received : 2022.12.10
  • Accepted : 2023.04.02
  • Published : 2023.07.25

Abstract

Film boiling may lead to burnout of the heating element. Even though burnout does not occur, the heating element is subject to deformation because it is not sufficiently strong to withstand external loads. In particular, the ballooning and rupture of a tube under film boiling are important phenomena in the field of nuclear reactor safety. If the tube-type cladding of nuclear fuel ruptures owing to high internal pressure and thermal load, radioactive materials inside the cladding are released to the coolant. Therefore, predicting the ballooning and rupture is important. This study presents numerical simulations to predict the ballooning behavior and rupture time of a horizontal tube at high internal pressure under saturated film boiling. To do so, a multi-step coupled simulation of conjugated film boiling heat transfer and ballooning using creep model is adopted. The numerical methods and models are validated against experimental values. Two different nonuniform heat flux distributions and four different internal pressures are considered. The three-step simulation is enough to obtain a convergent result. However, the single-step simulation also successfully predicts the rupture time. This is because the film boiling heat transfer characteristics are slightly affected by the tube geometry related to creep ballooning.

Keywords

Acknowledgement

This work was supported by a National Research Foundation of Korea (NRF) grant, funded by the Ministry of Science and ICT (No. NRF-2020R1A2C1010460, NRF-2021M2D2A1A02039565).

References

  1. D.K. Agarwal, S.W.J. Welch, G. Biswas, F. Durst, Planar simulation of bubble growth in film boiling in near-critical water using a variant of the VOF method, J. Heat Tran. 126 (2004) 329-338, https://doi.org/10.1115/1.1737779.
  2. K.Y. Lervag, H.L. Skarsvag, E. Aursand, J.A. Ouassou, M. Hammer, G. Reigstad, A. Ervik, E.H. Fyhn, M.A. Gjennestad, P. Aursand, O. Wilhelmsen, A combined fluid-dynamic and thermodynamic model to predict the onset of rapid phase transitions in LNG spills, J. Loss Prev. Process. Ind. 69 (2021), 104354, https://doi.org/10.1016/j.jlp.2020.104354.
  3. R. Arevalo, D. Antunez, L. Rebollo, A. Abanades, Estimation of radiation  coupling factors in film boiling around spheres by mean of Computational Fluid Dynamics (CFD) tools, Int. J. Heat Mass Tran. 78 (2014) 84-89, https://doi.org/10.1016/j.ijheatmasstransfer.2014.06.063.
  4. C.C. Hsu, M.R. Lee, C.H. Wu, P.H. Chen, Effect of interlaced wettability on horizontal copper cylinders in nucleate pool boiling, Appl. Therm. Eng. 112 (2017) 1187-1194, https://doi.org/10.1016/j.applthermaleng.2016.10.176.
  5. M.R. Mata Arenales, S.K. Sujith, L.S. Kuo, P.H. Chen, Surface roughness variation effects on copper tubes in pool boiling of water, Int. J. Heat Mass Tran. 151 (2020), 119399, https://doi.org/10.1016/j.ijheatmasstransfer.2020.119399.
  6. Y. Sato, B. Niceno, Pool boiling simulation using an interface tracking method: from nucleate boiling to film boiling regime through critical heat flux, Int. J. Heat Mass Tran. 125 (2018) 876-890, https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.131.
  7. X. Ma, P. Cheng, 3D simulations of pool boiling above smooth horizontal heated surfaces by a phase-change lattice Boltzmann method, Int. J. Heat Mass Tran. 131 (2019) 1095e1108, https://doi.org/10.1016/ j.ijheatmasstransfer.2018.11.103.
  8. A. Saha, A.K. Das, Numerical study of boiling around wires and influence of active or passive neighbours on vapour film dynamics, Int. J. Heat Mass Tran. 130 (2019) 440-454, https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.117.
  9. B.A. Schrefler, R. Codina, F. Pesavento, J. Principe, Thermal coupling of fluid flow and structural response of a tunnel induced by fire, Int. J. Numer. Methods Eng. 87 (2011) 361-385, https://doi.org/10.1002/nme.3077.
  10. M. Miana, E. Bernal, J. Paniagua, J.R. Valdes, S. Izquierdo, I. Pellejero, A simple numerical methodology for thermal-fluid-structural interactions of air damping over heated micro-cantilevers, Microfluid. Nanofluidics 13 (2012) 131-140, https://doi.org/10.1007/s10404-012-0951-5.
  11. T.A. Cheema, H. Ali, C.W. Park, Thermal-FSI based analysis of annealing process for a steel wire in a tube furnace, Appl. Therm. Eng. 98 (2016) 340-351, https://doi.org/10.1016/j.applthermaleng.2015.12.070.
  12. T. Long, P. Yang, M. Liu, A novel coupling approach of smoothed finite element method with SPH for thermal fluid structure interaction problems, Int. J. Mech. Sci. 174 (2020), 105558, https://doi.org/10.1016/j.ijmecsci.2020.105558.
  13. H.S. Raut, A. Bhattacharya, A. Sharma, Computational multifluid-structure interaction study on nucleate boiling under the effect of stationary or oscillating torus, Int. J. Heat Mass Tran. 193 (2022), 122995, https://doi.org/10.1016/j.ijheatmasstransfer.2022.122995.
  14. M. Vahab, K. Shoele, M. Sussman, Interaction of an oscillating flexible plate and nucleate pool boiling vapor bubble: fluid-structure interaction in a multimaterial multiphase system, 2018 Fluid Dyn. Conf. (2018), https://doi.org/10.2514/6.2018-3718.
  15. K. Takano, Y. Hashimoto, T. Kunugi, T. Yokomine, Z. Kawara, Subcooled boiling-induced vibration of a heater rod located between two metallic walls, Nucl. Eng. Des. 308 (2016) 312-321, https://doi.org/10.1016/j.nucengdes.2016.08.046.
  16. K. Mondal, A. Bhattacharya, Pool boiling enhancement through induced vibrations in the liquid pool due to moving solid bodies - a numerical study using lattice Boltzmann method (LBM), Phys. Fluids 33 (2021), 093310, https://doi.org/10.1063/5.0057637.
  17. M. An, M. Liu, Y. Ma, X. Xu, Multi-scale vibration behavior of a graphite tube with an internal vapor-liquid-solid boiling flow, Powder Technol. 291 (2016) 201-213, https://doi.org/10.1016/j.powtec.2015.12.025.
  18. C. Staszel, S. Sinha-Ray, A.L. Yarin, Forced vibration of a heated wire subjected to nucleate boiling, Int. J. Heat Mass Tran. 135 (2019) 44-51, https://doi.org/10.1016/j.ijheatmasstransfer.2019.01.101.
  19. X. Xu, M. Liu, Y. Ma, M. An, Y. Ma, Chaotic vibration characters of a graphite tube with an internal vapor-liquid-solid flow boiling, Powder Technol. 371 (2020) 74-82, https://doi.org/10.1016/j.powtec.2020.05.075.
  20. V.T. Nguyen, A. Sadeghi, B.J. Kim, Numerical Simulation of Deformation of Heater Wire under Film Boiling, 2022 [It has not published yet, but under revision].
  21. J. Kim, J.W. Yoon, H. Kim, S.U. Lee, Prediction of ballooning and burst for nuclear fuel cladding with anisotropic creep modeling during Loss of Coolant Accident (LOCA), Nucl. Eng. Technol. 53 (2021) 3379-3397, https://doi.org/10.1016/j.net.2021.04.020.
  22. G.H. Choi, C.H. Shin, J.Y. Kim, B.J. Kim, Circumferential steady-state creep test and analysis of Zircaloy-4 fuel cladding, Nucl. Eng. Technol. 53 (2021) 2312-2322, https://doi.org/10.1016/j.net.2021.01.010.
  23. D.H. Kim, G.H. Choi, H. Kim, C. Lee, S.U. Lee, J.D. Hong, H.S. Kim, Measurement of Zircaloy-4 cladding tube deformation using a three-dimensional digital image correlation system with internal transient heating and pressurization, Nucl. Eng. Des. 363 (2020), 110662, https://doi.org/10.1016/j.nucengdes.2020.110662.
  24. T. Jailin, N. Tardif, J. Desquines, P. Chaudet, M. Coret, M.C. Baietto, V. Georgenthum, Thermo-mechanical behavior of Zircaloy-4 claddings under simulated post-DNB conditions, J. Nucl. Mater. 531 (2020), 151984, https://doi.org/10.1016/j.jnucmat.2020.151984.
  25. S.K. Lee, M. Liu, N.R. Brown, K.A. Terrani, E.D. Blandford, H. Ban, C.B. Jensen, Y. Lee, Comparison of steady and transient flow boiling critical heat flux for FeCrAl accident tolerant fuel cladding alloy, Zircaloy, and Inconel, Int. J. Heat Mass Tran. 132 (2019) 643-654, https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.141.
  26. A.K. Yadav, C.H. Shin, S.U. Lee, H.C. Kim, Experimental and numerical investigation on thermo-mechanical behavior of fuel rod under simulated LOCA conditions, Nucl. Eng. Des. 337 (2018) 51-65, https://doi.org/10.1016/j.nucengdes.2018.06.023.
  27. D. Campello, N. Tardif, M. Moula, M.C. Baietto, M. Coret, J. Desquines, Identification of the steady-state creep behavior of Zircaloy-4 claddings under simulated Loss-Of-Coolant Accident conditions based on a coupled experimental/numerical approach, Int. J. Solid Struct. 115-116 (2017) 190-199, https://doi.org/10.1016/j.ijsolstr.2017.03.016.
  28. K. Geelhood, I. Porter, C. Goodson, W. Luscher, L. Kyriazidis, E. Torres, MatLib-1. 0 : Nuclear Material Properties Library, Pacific Northwest Natl, Lab. Richland, Washingt, 2020.
  29. D.L. Hagrman, G.A. Reymann, Mapro-A handbook of materials properties for use in the analysis of light water reactor fuel rod behavior, Idaho Natl. Eng. Labratory. 11 (1979) 203-482.
  30. J.H. Lienhard, P.T.Y. Wong, The dominant unstable wavelength and minimum heat flux during film boiling on a horizontal cylinder, J. Heat Tran. 86 (1964) 220-225, https://doi.org/10.1115/1.3687103.
  31. ANSYS Inc, Ansys Fluent Theory Guide, 2018, p. 697.
  32. G. Krishnamoorthy, A computationally efficient P1 radiation model for modern combustion systems utilizing pre-conditioned conjugate gradient methods, Appl. Therm. Eng. 119 (2017) 197-206, https://doi.org/10.1016/j.applthermaleng.2017.03.055.
  33. P. Wang, F. Fan, Q. Li, Accuracy evaluation of the gray gas radiation model in CFD simulation, Case Stud. Therm. Eng. 3 (2014) 51-58, https://doi.org/10.1016/j.csite.2014.03.003.
  34. W.H. McAdams, Heat Transmission, McGRAW-HILL, 1954, pp. 85-98.
  35. D.L. Sun, J.L. Xu, L. Wang, Development of a vapor-liquid phase change model for volume-of-fluid method in FLUENT, Int. Commun. Heat Mass Tran. 39 (2012) 1101-1106, https://doi.org/10.1016/j.icheatmasstransfer.2012.07.020.
  36. H.K. Versteeg, W. Malalasekera, An introduction to computational fluid dynamics the finite volume method, Pearson Educ. Limited, Engl. 2 (2007) 193-196.
  37. B. Anderson, R. Andresson, L. Hakansson, M. Mortensen, R. Sudiyo, B. van Wachem, Computational Fluid Dynamics for Engineers, Cambridge Univ. Press. (20011).
  38. D.B. Kothe, W.J. Rider, Comments on Modeling Interfacial Flows with Volume-Of-Fluid Methods, Los Alamos Natl. Lab. Los Alamos, NM, USA, 1995.
  39. W. Wagner, H.-J. Kretzschmar, International Steam Tables: Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97, Springer, Berlin, Heidelb, 2008, pp. 7-150.
  40. R.R. Archer, N.H. Cook, S.H. Crandall, An introduction to the mechanics of solids. https://doi.org/10.1063/1.3057081, 2012.
  41. K. Naumenko, Modeling of High-Temperature Creep for Structural Analysis Applications, Prof. Thesis, Martin Luther Univ. Halle-Wittenberg, Ger, 2006.
  42. M.K. Khan, M. Pathak, Ballooning deformation of zircaloy-4 fuel sheath, J. Press. Vessel Technol. Trans. ASME. 136 (2014) 1-12, https://doi.org/10.1115/1.4026146.
  43. F.J. Erbacher, H.J. Neitzel, H. Rosinger, H. Schmidt, K. Wiehr, Burst Criterion of Zircaloy Fuel Claddings in a Loss-Of-Coolant Accident, ASTM Int., 1982, pp. 271-283.
  44. H.E. Rosinger, J. Bowden, R.S.W. Shewfelt, The Anisotropic Creep Behaviour of Zircaloy-4 Fuel Cladding at 1073 K, At. Energy Canada Ltd, 1982, pp. 10-11.
  45. K.J. Geelhood, C.E. Beyer, W.G. Luscher, Stress/strain correlation for zircaloy, pacific northwest, Natl. Lab. 1 (2008) 3-7.
  46. Ansys Inc., ANSYS Mechanical APDL Material Reference, 2018, pp. 37-38.
  47. K. Nishikawa, T. Ito, K. Matsumoto, Kuroki Torato, Investigation of surface film boiling under free convection (2nd report, effect of diameter of horizontal cylinder and system pressure), Bull. JSME. 15 (1972) 1591-1602. https://doi.org/10.1299/jsme1958.15.1591
  48. R.W. Serth, Boiling Heat Transfer, 2007, pp. 385-441, https://doi.org/10.1016/B978-012373588-1/50012-7.