• Title/Summary/Keyword: Tube rupture

Search Result 161, Processing Time 0.022 seconds

Numerical investigation on ballooning and rupture of a Zircaloy tube subjected to high internal pressure and film boiling conditions

  • Van Toan Nguyen;Hyochan Kim;Byoung Jae Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2454-2465
    • /
    • 2023
  • Film boiling may lead to burnout of the heating element. Even though burnout does not occur, the heating element is subject to deformation because it is not sufficiently strong to withstand external loads. In particular, the ballooning and rupture of a tube under film boiling are important phenomena in the field of nuclear reactor safety. If the tube-type cladding of nuclear fuel ruptures owing to high internal pressure and thermal load, radioactive materials inside the cladding are released to the coolant. Therefore, predicting the ballooning and rupture is important. This study presents numerical simulations to predict the ballooning behavior and rupture time of a horizontal tube at high internal pressure under saturated film boiling. To do so, a multi-step coupled simulation of conjugated film boiling heat transfer and ballooning using creep model is adopted. The numerical methods and models are validated against experimental values. Two different nonuniform heat flux distributions and four different internal pressures are considered. The three-step simulation is enough to obtain a convergent result. However, the single-step simulation also successfully predicts the rupture time. This is because the film boiling heat transfer characteristics are slightly affected by the tube geometry related to creep ballooning.

Separate and integral effect tests of aerosol retention in steam generator during tube rupture accident

  • Lee, Byeonghee;Kim, Sung-Il;Ha, Kwang Soon
    • Nuclear Engineering and Technology
    • /
    • v.54 no.7
    • /
    • pp.2702-2713
    • /
    • 2022
  • A steam generator tube rupture accompanying a core damage may cause the fission product to be released to environment bypassing the containment. In such an accident, the steam generator is the major path of the radioactive aerosol release. AEOLUS facility, the scaled-down model of Korean type steam generator, was built to examine the aerosol removal in the steam generator during the steam generator tube rupture accident. Integral and separate effect tests were performed with the facility for the dry and flooded conditions, and the decontamination factors were presented for different tube configurations and submergences. The dry test results were compared with the existing test results and with the analyses to investigate the aerosol retention physics by the tube bundle, with respect to the particle size and the bundle geometry. In the flooded tests, the effect of submergence were shown and the retention in the jet injection region were presented with respect to the Stokes number. The test results are planned to be used to constitute the aerosol retention model, specifically applicable for the analysis of the steam generator tube rupture accident in Korean nuclear power plants to evaluate realistic fission product behavior.

Creep Deformation and Rupture Behavior of Alloy 690 Tube (Alloy 690 전열관의 크리프 변형 및 파단 거동)

  • Kim, Woo-Gon;Kim, Jong-Min;Kim, Min-Chul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • Creep rupture data for Alloy 690 steam generator tubes in a pressurized water reactor are essentially needed to demonstrate a severe accident scenario on thermally-induced tube failures caused by hot gases in a damaged reactor core. The rupture data were obtained using the tube specimens under different applied-stress levels at 650℃, 700℃, 750℃, 800℃, and 850℃. Important creep constants were proposed using various creep laws in terms of Norton power law, Monkman-Grant (M-G) relation, damage tolerance factor (λ), and Zener-Hollomon parameter (Z). In addition, a creep activation energy (Q) value for Alloy 690 tube was reasonably determined using experimental data. Creep behaviors such as creep strength, creep rates, rupture elongation showed the results of temperature dependence well. Modified M-G plot improved a correlation of the creep rate and rupture life. Damage tolerance factor for Alloy 690 tubes was found to be λ =2.20 in an average value. Creep activation energy for Alloy 690 tube was optimized for Q=350 (kJ/mol). A plot of Z parameter obeyed a good linearity, and the same creep mechanism was inferred to be operative in the present test conditions.

Numerical Simulation of the Effect of Finite Diaphragm Rupture Process on Micro Shock Tube Flows

  • Arun Kumar, R.;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.309-317
    • /
    • 2012
  • Recent years have witnessed the use of micro shock tube in various engineering applications like micro combustion, micro propulsion, particle delivery systems etc. The flow characteristics occurring in the micro shock tube shows a considerable deviation from that of well established conventional macro shock tube due to very low Reynolds number and high Knudsen number effects. Also the diaphragm rupture process, which is considered to be instantaneous process in many of the conventional shock tubes, will be crucial for micro shock tubes in determining the near diaphragm flow field and shock formation. In the present study, an axi-symmetric CFD method has been applied to simulate the micro shock tube, with Maxwell's slip velocity and temperature jump boundary conditions. The effects of finite diaphragm rupture process on the flow field and the shock formation was investigated, in detail. The results show that the shock strength attenuates rapidly as it propagates through micro shock tubes.

  • PDF

Effect of Punch Shapes on Failure Instability of Expansion Tube (펀치형상이 팽창튜브의 파단불안전성에 미치는 영향)

  • Choi, Won-Mok;Kwon, Tae-Su;Jung, Hyun-Sung;Kim, Jing-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.125-132
    • /
    • 2011
  • The rupture of an expansion tube is mainly affected by the expansion ratio and the external shape of the punch used to expand the tube. In order to prevent the tube from rupture, the effect of the external shape of the punch should be considered in the design. The aim of this paper is to confirm the effect of key design parameters of the punch on rupture of the tube using a finite element analysis with a ductile damage model. The results of the analysis indicated that the expansion ratio of the tube was mainly affected by variation of the radius of the punch. However, the rupture was more affected by variation of the punch angle than the radius of the punch. The existence of a specific punch angle at which rupture did not occur, even if the radius of the punch was increased, was found from the results.

Surrounding rock pressure of shallow-buried bilateral bias tunnels under earthquake

  • Liu, Xin-Rong;Li, Dong-Liang;Wang, Jun-Bao;Wang, Zhen
    • Geomechanics and Engineering
    • /
    • v.9 no.4
    • /
    • pp.427-445
    • /
    • 2015
  • By means of finite element numerical simulation and pseudo-static method, the shallow-buried bilateral bias twin-tube tunnel subject to horizontal and vertical seismic forces are researched. The research includes rupture angles, the failure mode of the tunnel and the distribution of surrounding rock relaxation pressure. And the analytical solution for surrounding rock relaxation pressure is derived. For such tunnels, their surrounding rock has sliding rupture planes that generally follow a "W" shape. The failure area is determined by the rupture angles. Research shows that for shallow-buried bilateral bias twin-tube tunnel under the action of seismic force, the load effect on the tunnel structure shall be studied based on the relaxation pressure induced by surrounding rock failure. The rupture angles between the left tube and the right tube are independent of the surface slope. For tunnels with surrounding rock of Grade IV, V and VI, which is of poor quality, the recommended reinforcement range for the rupture angles is provided when the seismic fortification intensity is VI, VII, VIII and IX respectively. This study is expected to provide theoretical support regarding the ground reinforcement range for the shallow-buried bilateral bias twin-tube tunnel under seismic force.

Effect of Change of Reactor Coolant Injection Method on Risk at Loss of Coolant Accident due to Beam Tube Rupture (빔튜브파단 냉각재상실사고시 원자로냉각수 보충방법 변경이 리스크에 미치는 영향)

  • Lee, Yoon-Hwan;Lee, Byeonghee;Jang, Seung-Cheol
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.4
    • /
    • pp.129-138
    • /
    • 2022
  • A new method for injecting cooling water into the Korean research reactor (KRR) in the event of beam tube rupture is proposed in this paper. Moreover, the research evaluates the risk to the reactor core in terms of core damage frequency (CDF). The proposed method maintains the cooling water in the chimney at a certain level in the tank to prevent nuclear fuel damage solely by gravitational coolant feeding from the emergency water supply system (EWSS). This technique does not require sump recirculation operations described in the current procedure for resolving beam tube accidents. The reduction in the risk to the core in the event of beam tube rupture that can be achieved by the proposed change in the cooling water injection design is quantified as follows. 1) The total CDF of the KRR for the proposed design change is approximately 4.17E-06/yr, which is 8.4% lower than the CDF of the current design (4.55E-06/yr). 2) The CDF for beam tube rupture is 7.10E-08/yr, which represents an 84.1% decrease compared with that of the current design (4.49E-07/yr). In addition to this quantitative reduction in risk, the modified cooling water injection design maintains a supply of pure coolant to the EWSS tank. This means that the reactor does not require decontamination after an accident. Thermal hydraulic analysis proves that the water level in the reactor pool does not cause damage to the nuclear fuel cladding after beam tube rupture. This is because the amount of water in the chimney can be regulated by the EWSS function. The EWSS supplies emergency water to the reactor core to compensate for the evaporation of coolant in the core, thus allowing water to cover the fuel assemblies in the reactor core over a sufficient amount of time.

Numerical Simulation of the Effect of Finite Diaphragm Rupture Process on Micro Shock Tube Flows (Micro shock tube 유동에 대한 유한 격막 파막과정의 영향에 관한 수치 해석적 연구)

  • Arun Kumar, R.;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.3
    • /
    • pp.37-46
    • /
    • 2013
  • Recent years have witnessed the use of micro shock tube in various engineering applications like micro combustion, micro propulsion, particle delivery systems etc. The flow characteristics occurring in the micro shock tube shows a considerable deviation from that of well established conventional macro shock tube due to very low Reynolds number and high Knudsen number effects. Also the diaphragm rupture process, which is considered to be instantaneous process in many of the conventional shock tubes, will be crucial for micro shock tubes in determining the near diaphragm flow field and shock formation. In the present study, an axi-symmetric CFD method has been applied to simulate the micro shock tube, with Maxwell's slip velocity and temperature jump boundary conditions. The effects of finite diaphragm rupture process on the flow field and the shock formation was investigated, in detail. The results show that the shock strength attenuates rapidly as it propagates through micro shock tubes.

Left Bronchial Rupture Following Endobronchial Intubation - One case report - (기관 삽관후 발생한 좌측 주기관지 파열 - 1례 보고 -)

  • 김건일;지현근;김형수;이희성;이원용
    • Journal of Chest Surgery
    • /
    • v.31 no.10
    • /
    • pp.1014-1016
    • /
    • 1998
  • Rupture of the bronchus following endotracheal intubation with a double-lumen tube is extremely rare in all complications of endotracheal intubation. We experienced a case of left main bronchial rupture following endotracheal intubation. This 58-year old female patient was diagnosed of well-differentiated adenocarcinoma of right lower lobe, stage IIB, preoperatively. She was intubated with Robertshaw double-lumen tube(35 Fr.) for Rt. lower lobectomy. Intraoperatively, Lt. main bronchial rupture was suspected because of pneumomediastinum and ventilation insufficiency and immediately repaired with monofilament absorbable sutures(PDS) through left thoracotomy. Postoperative course was uneventful.

  • PDF

Numerical Analysis of Corrosion Effects on the Life of Boiler Tube (보일러관의 수명에 부식이 미치는 영향에 대한 수치해석)

  • Hong, Seong-Ho;Kim, Jong-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.11
    • /
    • pp.2812-2822
    • /
    • 2000
  • Several methods have been developed to predict the rupture time of the boiler tubes in thermal power plant. However, existing life prediction methods give very conservative value at operating stress of power plant and rupture strain cannot be well estimated. Therefore, in this study, rupture time and strain prediction method accounting for creep, corrosion and heat transfer is newly proposed and compared with the current research results. The creep damage evolves by continuous cavity nucleation and constrained cavity growth. The corrosion damage evolves by steam side and fire side corrosion. The results showed good correlation between the theoretically predicted rupture time and the current research results. And rupture strain may be well estimated by using the proposed method.