DOI QR코드

DOI QR Code

Sinus augmentation with poly(ε) caprolactone-β tricalcium phosphate scaffolds, mesenchymal stem cells and platelet rich plasma for one-stage dental implantation in minipigs

  • Jeong-Hun Nam (Department of Oral & Maxillofacial Surgery, School of Dentistry, Seoul National University) ;
  • Akram Abdo Almansoori (Department of Oral & Maxillofacial Surgery, School of Dentistry, Seoul National University) ;
  • Oh-Jun Kwon (Department of Oral & Maxillofacial Surgery, School of Dentistry, Seoul National University) ;
  • Young-Kwon Seo (Department of Chemical and Biochemical Engineering, College of Engineering, Dongkuk University) ;
  • Bongju Kim (Dental Life Science Research Institute, Innovation Research & Support Center for Dental Science, Seoul National University Dental Hospital) ;
  • Young-Kyun Kim (Department of Oral & Maxillofacial Surgery, Section of Dentistry, Seoul National University Bundang Hospital) ;
  • Jong-Ho Lee (Dental Life Science Research Institute, Innovation Research & Support Center for Dental Science, Seoul National University Dental Hospital) ;
  • KangMi Pang (Department of Oral & Maxillofacial Surgery, Seoul National University Gwanak Dental Hospital)
  • Received : 2023.01.13
  • Accepted : 2023.04.03
  • Published : 2023.06.30

Abstract

Purpose: This study evaluated the efficacy of a tube-shaped poly(ε) caprolactone - β tricalcium phosphate (PCL-TCP) scaffold with the incorporation of human umbilical cord-derived mesenchymal stem cells (hUCMSCs) and platelet-rich plasma (PRP) for bone regeneration in the procedure of single-stage sinus augmentation and dental implantation in minipigs. Methods: Implants were placed in the bilateral sides of the maxillary sinuses of 5 minipigs and allocated to a PCL-TCP+hUCMSCs+PRP group (n=5), a PCL-TCP+PRP group (n=5), and a PCL-TCP-only group (n=6). After 12 weeks, bone regeneration was evaluated with soft X-rays, micro-computed tomography, fluorescence microscopy, and histomorphometric analysis. Results: Four implants failed (2 each in the PCL-TCP+hUCMSCs+PRP and PCLTCP+hUCMSC groups). An analysis of the grayscale levels and bone-implant contact ratio showed significantly higher mean values in the PCL-TCP+hUCMSCs+PRP than in the PCL-TCP group (P=0.045 and P=0.016, respectively). In fluoromicroscopic images, new bone formation around the outer surfaces of the scaffolds was observed in the PCLTCP+hUCMSCs+PRP group, suggesting a tenting effect of the specially designed scaffolds. Bone regeneration at the scaffold-implant interfaces was observed in all 3 groups. Conclusions: Using a tube-shaped, honeycombed PCL-TCP scaffold with hUCMSCs and PRP may serve to enhance bone formation and dental implants' osseointegration in the procedure of simultaneous sinus lifting and dental implantation.

Keywords

Acknowledgement

This research was supported by a grant from the Korea Health Technology R&D Project through the Korea Health Industry Development Institute and funded by the Ministry of Health and Welfare, Republic of Korea (HI20C2114).

References

  1. Jensen OT, Shulman LB, Block MS, Iacono VJ. Report of the Sinus Consensus Conference of 1996. Int J Oral Maxillofac Implants 1998;13 Suppl:11-45.
  2. Wood RM, Moore DL. Grafting of the maxillary sinus with intraorally harvested autogenous bone prior to implant placement. Int J Oral Maxillofac Implants 1988;3:209-14.
  3. Nkenke E, Weisbach V, Winckler E, Kessler P, Schultze-Mosgau S, Wiltfang J, et al. Morbidity of harvesting of bone grafts from the iliac crest for preprosthetic augmentation procedures: a prospective study. Int J Oral Maxillofac Surg 2004;33:157-63. https://doi.org/10.1054/ijom.2003.0465
  4. Nasr HF, Aichelmann-Reidy ME, Yukna RA. Bone and bone substitutes. Periodontol 2000 1999;19:74-86. https://doi.org/10.1111/j.1600-0757.1999.tb00148.x
  5. Ozbek B, Erdogan B, Ekren N, Oktar FN, Akyol S, Ben-Nissan B, et al. Production of the novel fibrous structure of poly(ε-caprolactone)/tri-calcium phosphate/hexagonal boron nitride composites for bone tissue engineering. J Aust Ceram Soc 2018;54:251-60. https://doi.org/10.1007/s41779-017-0149-0
  6. Huang B, Caetano G, Vyas C, Blaker JJ, Diver C, Bartolo P. Polymer-ceramic composite scaffolds: the effect of hydroxyapatite and β-tri-calcium phosphate. Materials (Basel) 2018;11:129.
  7. Lee JW, Chu SG, Kim HT, Choi KY, Oh EJ, Shim JH, et al. Osteogenesis of adipose-derived and bone marrow stem cells with polycaprolactone/tricalcium phosphate and three-dimensional printing technology in a dog model of maxillary bone defects. Polymers (Basel) 2017;9:450.
  8. Shim JH, Won JY, Park JH, Bae JH, Ahn G, Kim CH, et al. Effects of 3D-printed polycaprolactone/β-tricalcium phosphate membranes on guided bone regeneration. Int J Mol Sci 2017;18:899.
  9. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials 2000;21:2529-43. https://doi.org/10.1016/S0142-9612(00)00121-6
  10. Wang Y, Uemura T, Dong J, Kojima H, Tanaka J, Tateishi T. Application of perfusion culture system improves in vitro and in vivo osteogenesis of bone marrow-derived osteoblastic cells in porous ceramic materials. Tissue Eng 2003;9:1205-14. https://doi.org/10.1089/10763270360728116
  11. Kang SH, Park JB, Kim I, Lee W, Kim H. Assessment of stem cell viability in the initial healing period in rabbits with a cranial bone defect according to the type and form of scaffold. J Periodontal Implant Sci 2019;49:258-67. https://doi.org/10.5051/jpis.2019.49.4.258
  12. Pieri F, Lucarelli E, Corinaldesi G, Iezzi G, Piattelli A, Giardino R, et al. Mesenchymal stem cells and platelet-rich plasma enhance bone formation in sinus grafting: a histomorphometric study in minipigs. J Clin Periodontol 2008;35:539-46. https://doi.org/10.1111/j.1600-051X.2008.01220.x
  13. Safi IN, Hussein BM, Al-Shammari AM. Bio-hybrid dental implants prepared using stem cells with β-TCPcoated titanium and zirconia. J Periodontal Implant Sci 2022;52:242-57. https://doi.org/10.5051/jpis.2006080304
  14. Bilodeau K, Mantovani D. Bioreactors for tissue engineering: focus on mechanical constraints. A comparative review. Tissue Eng 2006;12:2367-83. https://doi.org/10.1089/ten.2006.12.2367
  15. Song K, Liu T, Cui Z, Li X, Ma X. Three-dimensional fabrication of engineered bone with human bioderived bone scaffolds in a rotating wall vessel bioreactor. J Biomed Mater Res A 2008;86:323-32. https://doi.org/10.1002/jbm.a.31624
  16. Sikavitsas VI, Bancroft GN, Mikos AG. Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor. J Biomed Mater Res 2002;62:136-48. https://doi.org/10.1002/jbm.10150
  17. Zhang ZY, Teoh SH, Chong WS, Foo TT, Chng YC, Choolani M, et al. A biaxial rotating bioreactor for the culture of fetal mesenchymal stem cells for bone tissue engineering. Biomaterials 2009;30:2694-704. https://doi.org/10.1016/j.biomaterials.2009.01.028
  18. Almansoori AA, Kwon OJ, Nam JH, Seo YK, Song HR, Lee JH. Mesenchymal stem cells and platelet-rich plasma-impregnated polycaprolactone-β tricalcium phosphate bio-scaffold enhanced bone regeneration around dental implants. Int J Implant Dent 2021;7:35.
  19. Lee J, Susin C, Rodriguez NA, de Stefano J, Prasad HS, Buxton AN, et al. Sinus augmentation using rhBMP-2/ACS in a mini-pig model: relative efficacy of autogenous fresh particulate iliac bone grafts. Clin Oral Implants Res 2013;24:497-504. https://doi.org/10.1111/j.1600-0501.2011.02419.x
  20. Ohya M, Yamada Y, Ozawa R, Ito K, Takahashi M, Ueda M. Sinus floor elevation applied tissue-engineered bone. Comparative study between mesenchymal stem cells/platelet-rich plasma (PRP) and autogenous bone with PRP complexes in rabbits. Clin Oral Implants Res 2005;16:622-9. https://doi.org/10.1111/j.1600-0501.2005.01136.x
  21. Ito K, Yamada Y, Naiki T, Ueda M. Simultaneous implant placement and bone regeneration around dental implants using tissue-engineered bone with fibrin glue, mesenchymal stem cells and platelet-rich plasma. Clin Oral Implants Res 2006;17:579-86.  https://doi.org/10.1111/j.1600-0501.2006.01246.x
  22. Weiss ML, Mitchell KE, Hix JE, Medicetty S, El-Zarkouny SZ, Grieger D, et al. Transplantation of porcine umbilical cord matrix cells into the rat brain. Exp Neurol 2003;182:288-99. https://doi.org/10.1016/S0014-4886(03)00128-6
  23. Weiss ML, Troyer DL. Stem cells in the umbilical cord. Stem Cell Rev 2006;2:155-62. https://doi.org/10.1007/s12015-006-0022-y
  24. Medicetty S, Bledsoe AR, Fahrenholtz CB, Troyer D, Weiss ML. Transplantation of pig stem cells into rat brain: proliferation during the first 8 weeks. Exp Neurol 2004;190:32-41. https://doi.org/10.1016/j.expneurol.2004.06.023
  25. Fu YS, Cheng YC, Lin MY, Cheng H, Chu PM, Chou SC, et al. Conversion of human umbilical cord mesenchymal stem cells in Wharton's jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism. Stem Cells 2006;24:115-24. https://doi.org/10.1634/stemcells.2005-0053
  26. Portmann-Lanz CB, Schoeberlein A, Huber A, Sager R, Malek A, Holzgreve W, et al. Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am J Obstet Gynecol 2006;194:664-73. https://doi.org/10.1016/j.ajog.2006.01.101
  27. Hollister SJ, Levy RA, Chu TM, Halloran JW, Feinberg SE. An image-based approach for designing and manufacturing craniofacial scaffolds. Int J Oral Maxillofac Surg 2000;29:67-71. https://doi.org/10.1016/S0901-5027(00)80129-0
  28. Hutmacher DW, Schantz T, Zein I, Ng KW, Teoh SH, Tan KC. Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res 2001;55:203-16. https://doi.org/10.1002/1097-4636(200105)55:2<203::AID-JBM1007>3.0.CO;2-7
  29. Zein I, Hutmacher DW, Tan KC, Teoh SH. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 2002;23:1169-85. https://doi.org/10.1016/S0142-9612(01)00232-0
  30. Rai B, Teoh SH, Ho KH, Hutmacher DW, Cao T, Chen F, et al. The effect of rhBMP-2 on canine osteoblasts seeded onto 3D bioactive polycaprolactone scaffolds. Biomaterials 2004;25:5499-506. https://doi.org/10.1016/j.biomaterials.2004.01.007
  31. Rai B, Teoh SH, Hutmacher DW, Cao T, Ho KH. Novel PCL-based honeycomb scaffolds as drug delivery systems for rhBMP-2. Biomaterials 2005;26:3739-48. https://doi.org/10.1016/j.biomaterials.2004.09.052
  32. Feinberg SE, Aghaloo TL, Cunningham LL Jr. Role of tissue engineering in oral and maxillofacial reconstruction: findings of the 2005 AAOMS Research Summit. J Oral Maxillofac Surg 2005;63:1418-25. https://doi.org/10.1016/j.joms.2005.07.004
  33. Sung HJ, Meredith C, Johnson C, Galis ZS. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials 2004;25:5735-42. https://doi.org/10.1016/j.biomaterials.2004.01.066
  34. Lam CX, Hutmacher DW, Schantz JT, Woodruff MA, Teoh SH. Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo. J Biomed Mater Res A 2009;90:906-19. https://doi.org/10.1002/jbm.a.32052
  35. Roldan JC, Jepsen S, Schmidt C, Knuppel H, Rueger DC, Acil Y, et al. Sinus floor augmentation with simultaneous placement of dental implants in the presence of platelet-rich plasma or recombinant human bone morphogenetic protein-7. Clin Oral Implants Res 2004;15:716-23. https://doi.org/10.1111/j.1600-0501.2004.01070.x
  36. Vogel JP, Szalay K, Geiger F, Kramer M, Richter W, Kasten P. Platelet-rich plasma improves expansion of human mesenchymal stem cells and retains differentiation capacity and in vivo bone formation in calcium phosphate ceramics. Platelets 2006;17:462-9. https://doi.org/10.1080/09537100600758867
  37. Schantz JT, Teoh SH, Lim TC, Endres M, Lam CX, Hutmacher DW. Repair of calvarial defects with customized tissue-engineered bone grafts I. Evaluation of osteogenesis in a three-dimensional culture system. Tissue Eng 2003;9 Suppl 1:S113-26.  https://doi.org/10.1089/10763270360697021