Acknowledgement
This work was financially supported by J. C. Bose Fellowship of Prof. B. V. Rajarama Bhat.
References
- S. T. Ali, J.-P. Antoine, and J.-P. Gazeau, Continuous frames in Hilbert space, Ann. Physics 222 (1993), no. 1, 1-37. https://doi.org/10.1006/aphy.1993.1016
- M. Appleby, I. Bengtsson, S. Flammia, and D. Goyeneche, Tight frames, Hadamard matrices and Zauner's conjecture, J. Phys. A 52 (2019), no. 29, 295301, 26 pp. https://doi.org/10.1088/1751-8121/ab25ad
- J. J. Benedetto and M. Fickus, Finite normalized tight frames, Adv. Comput. Math. 18 (2003), no. 2-4, 357-385. https://doi.org/10.1023/A:1021323312367
- J. J. Benedetto and J. D. Kolesar, Geometric properties of grassmannian frames for ℝ2 and ℝ3, EURASIP J. Adv. Signal Process (2006), no. 049850.
- C. Bocci and L. Chiantini, An Introduction to Algebraic Statistics with Tensors, Unitext, 118, Springer, Cham, 2019. https://doi.org/10.1007/978-3-030-24624-2
- B. G. Bodmann and J. Haas, Frame potentials and the geometry of frames, J. Fourier Anal. Appl. 21 (2015), no. 6, 1344-1383. https://doi.org/10.1007/s00041-015-9408-z
- B. Bukh and C. Cox, Nearly orthogonal vectors and small antipodal spherical codes, Israel J. Math. 238 (2020), no. 1, 359-388. https://doi.org/10.1007/s11856-020-2027-7
- P. G. Casazza, M. Fickus, J. Kovacevic, M. T. Leon, and J. C. Tremain, A physical interpretation of tight frames, in Harmonic analysis and applications, 51-76, Appl. Numer. Harmon. Anal, Birkhauser Boston, Boston, MA, 2006. https://doi.org/10.1007/0-8176-4504-7_4
- O. Christensen, S. Datta, and R. Y. Kim, Equiangular frames and generalizations of the Welch bound to dual pairs of frames, Linear Multilinear Algebra 68 (2020), no. 12, 2495-2505. https://doi.org/10.1080/03081087.2019.1586825
- P. Comon, G. Golub, L. Lim, and B. Mourrain, Symmetric tensors and symmetric tensor rank, SIAM J. Matrix Anal. Appl. 30 (2008), no. 3, 1254-1279. https://doi.org/10.1137/060661569
- J. H. Conway, R. H. Hardin, and N. J. A. Sloane, Packing lines, planes, etc.: packings in Grassmannian spaces, Experiment. Math. 5 (1996), no. 2, 139-159. http://projecteuclid.org/euclid.em/1047565645 1047565645
- S. Datta, Welch bounds for cross correlation of subspaces and generalizations, Linear Multilinear Algebra 64 (2016), no. 8, 1484-1497. https://doi.org/10.1080/03081087.2015.1091437
- S. Datta, S. D. Howard, and D. Cochran, Geometry of the Welch bounds, Linear Algebra Appl. 437 (2012), no. 10, 2455-2470. https://doi.org/10.1016/j.laa.2012.05.036
- C. S. Ding and T. Feng, Codebooks from almost difference sets, Des. Codes Cryptogr. 46 (2008), no. 1, 113-126. https://doi.org/10.1007/s10623-007-9140-z
- J. Dravecky, Spaces with measurable diagonal, Mat. Casopis Sloven. Akad. Vied 25 (1975), no. 1, 3-9.
- M. Ehler and K. A. Okoudjou, Minimization of the probabilistic p-frame potential, J. Statist. Plann. Inference 142 (2012), no. 3, 645-659. https://doi.org/10.1016/j.jspi.2011.09.001
- Y. C. Eldar and G. Kutyniok, editors, Compressed Sensing: Theory and Application, Cambridge Univ. Press, Cambridge, 2012. https://doi.org/10.1017/CBO9780511794308
- S. Foucart and H. Rauhut, A mathematical introduction to compressive sensing, Applied and Numerical Harmonic Analysis, Birkhauser/Springer, New York, 2013. https://doi.org/10.1007/978-0-8176-4948-7
- J. I. Haas, N. Hammen, and D. G. Mixon, The Levenstein bound for packings in projective spaces, Proceedings, volume 10394, Wavelets and Sparsity XVII, SPIE Optical Engineering+Applications, San Diego, California, United States of America, 2017.
- M. Haikin, R. Zamir, and M. Gavish, Frame moments and Welch bound with erasures, in 2018 IEEE International Symposium on Information Theory (ISIT), (2018), 2057-2061.
- D. G. Han, K. Kornelson, D. Larson, and E. Weber, Frames for undergraduates, Student Mathematical Library, 40, Amer. Math. Soc., Providence, RI, 2007. https://doi.org/10.1090/stml/040
- J. Jasper, E. J. King, and D. G. Mixon, Game of Sloanes: best known packings in complex projective space, Proc. SPIE 11138, Wavelets and Sparsity XVIII, 2019.
- G. R. Kaiser, A friendly guide to wavelets, reprint of the 1994 edition, Modern Birkhauser Classics, Birkhauser/Springer, New York, 2011. https://doi.org/10.1007/978-0-8176-8111-1
- J. Kovacevic and A. Chebira, Life beyond bases: The advent of frames, part II, IEEE Signal Processing Magazine 24 (2005), no. 5, 115-125. https://doi.org/10.1109/MSP.2007.904809
- J. Kovacevic and A. Chebira, Life beyond bases: The advent of frames, part I, IEEE Signal Processing Magazine 24 (2007), no. 4, 86-104. https://doi.org/10.1109/MSP.2007.4286567
- K. K. Mukkavilli, A. Sabharwal, E. Erkip, and B. Aazhang, On beamforming with finite rate feedback in multiple-antenna systems, IEEE Trans. Inform. Theory 49 (2003), no. 10, 2562-2579. https://doi.org/10.1109/TIT.2003.817433
- A. Rahimi, B. Daraby, and Z. Darvishi, Construction of continuous frames in Hilbert spaces, Azerb. J. Math. 7 (2017), no. 1, 49-58.
- R. A. Rankin, The closest packing of spherical caps in n dimensions, Proc. Glasgow Math. Assoc. 2 (1955), 139-144. https://doi.org/10.1017/S2040618500033219
- C. Rose, S. Ulukus, and R. D. Yates, Wireless systems and interference avoidance, EEE Transactions on Wireless Communications 1 (2002), 415-428. https://doi.org/10.1109/TWC.2002.800540
- D. V. Sarwate, Bounds on crosscorrelation and autocorrelation of sequences, IEEE Trans. Inform. Theory 25 (1979), no. 6, 720-724. https://doi.org/10.1109/TIT.1979.1056116
- A. J. Scott, Tight informationally complete quantum measurements, J. Phys. A 39 (2006), no. 43, 13507-13530. https://doi.org/10.1088/0305-4470/39/43/009
- M. Soltanalian, M. M. Naghsh, and P. Stoica, On meeting the peak correlation bounds, IEEE Trans. Signal Process. 62 (2014), no. 5, 1210-1220. https://doi.org/10.1109/TSP.2014.2300064
- T. Strohmer and R. W. Heath Jr., Grassmannian frames with applications to coding and communication, Appl. Comput. Harmon. Anal. 14 (2003), no. 3, 257-275. https://doi.org/10.1016/S1063-5203(03)00023-X
- M. Sustik, J. A. Tropp, I. S. Dhillon, and J. Heath, On the existence of equiangular tight frames, Linear Algebra Appl. 426 (2007), no. 2-3, 619-635. https://doi.org/10.1016/j.laa.2007.05.043
- M. Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. 51 (1984), no. 307, ix+224 pp. https://doi.org/10.1090/memo/0307
- Y. S. Tan, Energy optimization for distributions on the sphere and improvement to the Welch bounds, Electron. Commun. Probab. 22 (2017), Paper No. 43, 12 pp. https://doi.org/10.1214/17-ECP73
- J. A. Tropp, I. S. Dhillon, J. Heath, and T. Strohmer, Designing structured tight frames via an alternating projection method, IEEE Trans. Inform. Theory 51 (2005), no. 1, 188-209. https://doi.org/10.1109/TIT.2004.839492
- S. F. Waldron, Generalized Welch bound equality sequences are tight frames, IEEE Trans. Inform. Theory 49 (2003), no. 9, 2307-2309. https://doi.org/10.1109/TIT.2003.815788
- S. F. Waldron, A sharpening of the Welch bounds and the existence of real and complex spherical t-designs, IEEE Trans. Inform. Theory 63 (2017), no. 11, 6849-6857. https://doi.org/10.1109/TIT.2017.2696020
- S. F. Waldron, An introduction to finite tight frames, Applied and Numerical Harmonic Analysis, Birkhauser/Springer, New York, 2018. https://doi.org/10.1007/978-0-8176-4815-2
- L. Welch, Lower bounds on the maximum cross correlation of signals, IEEE Transactions on Information Theory 20 (1974), no. 3, 397-399. https://doi.org/10.1109/TIT.1974.1055219
- P. Xia, S. Zhou, and G. B. Giannakis, Achieving the Welch bound with difference sets, IEEE Trans. Inform. Theory 51 (2005), no. 5, 1900-1907. https://doi.org/10.1109/TIT.2005.846411
- P. Xia, S. Zhou, and G. B. Giannakis, Correction to: "Achieving the Welch bound with difference sets [IEEE Trans. Inform. Theory 51 (2005), no. 5, 1900-1907], IEEE Trans. Inform. Theory 52 (2006), no. 7, 3359.